ONE-POT SYNTHESIS OF α-AMINOPHOSPHONATES
2525
8.0. Anal. Calcd. For C9H23NO7S2: C,33.63; H,7.21; N,4.36; Found: C,33.45; H,7.24;
N,4.21.
N,N,N-Tributyl-N-propanesulfonic acid ammonium hydrogen sulfate
1
[TBPSA][HSO4]. H NMR (500 Mz, D2O): δ = 3.28(t, 2H, J = 4.0 Hz, N CH2 ),
3.13 (t, 6H, J = 8.5 Hz, N CH2 ), 2.85 (t, 2H, J = 7.0Hz, CH2 SO3), 2.03 (m,
2H, CH2 CH2 CH2), 1.56 (m, 6H, CH2 CH2CH3), 1.25–1.28 (m, 6H, CH2 CH3),
0.84 (t, 9H, J = 7.5Hz, CH3). 13CNMR (300Mz, D2O): δ = 58.5, 50.7, 48.4, 24.0, 20.4,
19.2, 14.5. Anal. Calcd. For C15H35NO7S2: C,44.42; H,8.70; N,3.45; Found: C,44.27;
H,8.71; N,3.28.
N,N,N-Trimethyl-N-butanesulfonic acid ammonium hydrogen sulfate
1
[TMBSA][HSO4]. H NMR (300 Mz, D2O): δ = 3.24 (t, J = 8.4 Hz, 2H, N CH2 ),
2.99 (s, 9H, CH3), 2.85 (t, J = 7.5 Hz, 2H, CH2 SO3), 1.82 (m, 2H, CH2 ),
1.69–1.71 (m, 2H, CH2 ). 13C NMR (D2O,): δ = 66.2, 53.2, 50.3, 21.5, 19.9. Anal.
Calcd. For C7H19NO7S2: C, 28.66; H, 6.53; N, 4.77; Found: C, 28.40; H, 6.51; N, 4.92.
N,N,N-Triethyl-N-butanesulfonic acid ammonium hydrogen sul-
1
fate [TEBSA][HSO4]. H NMR (300 Mz, D2O): δ = 3.15 (q, J = 7.2 Hz, 6H,
N CH2 CH3), 3.07 (t, J = 8.4 Hz, 2H, N CH2 C3H6SO3), 2.82 (t, J = 7.2 Hz,
2H, CH2 SO3), 1.67–1.69 (m, 4H, C2H4 CH2SO3), 1.10–1.12 (m, 9H, CH3). 13
C
NMR (D2O,): δ = 56.2, 52.9, 50.3, 21.5, 20.2, 6.9. Anal. Calcd. For C10H25NO7S2: C,
35.78; H, 7.51; N, 4.18; Found: C, 35.82; H, 7.53; N, 4.36.
General Procedure for the Synthesis of α-Aminophosphonates
In a typical experiment, to a round-bottomed flask charged with aldehyde (10 mmol)
and aniline (10 mmol) in water (5 mL), TSILs (0.5 mmol) were added under stirring.
The mixture was stirred at room temperature for 5 min, and then trimethyl phosphite (12
mmol) was added. Upon completion (monitored by TLC), the products were separated by
filtration and dried under vacuum. The TSILs could be separated from the reaction mixture
by extraction with water. The products were identified by 1H NMR and physical data (mp)
and compared with authentic characterized samples as given in Table II.
REFERENCES
1. P. Kafarski and B. Lejczak, Phosphorous, Sulfur, and Silicon, 63, 1993 (1991).
2. (a) M. C. Allen, W. Fuhrer, B. Tuck, R. Wade, and J. M. Wood, J. Med. Chem., 32, 1652 (1989);
(b) P. P. Giannousis and P. A. Bartlet, J. Med. Chem., 30, 1603 (1987).
3. (a) F. R. Atherton, C. H. Hassall, and R. W. Lambert, J. Med. Chem., 29, 29 (1986); (b) E. K.
Baylis, C. D. Campbell, and J. G. Dingwall, J. Chem. Soc., Perkin Trans. 1, 2845 (1986).
4. R. Hirschmann, A. B. Smith III, C. M. Taylor, P. A. Benkovic, S. D. Taylor, K. M. Yager, P. A.
Sprengler, and S. J. Venkovic, Science, 265, 234 (1994).
5. (a) X. J. Mu, M. Y. Lei, J. P. Zou, and W. Zhang, Tetrahedron Lett., 47, 1125 (2006); (b) M. Xia
and Y. Lu, Ultrason. Sonochem., 14, 235 (2007); (c) S. S. Sonar, S. A. Sadaphal, V. B. Labade,
B. B. Shingate, and M. S. Shingare, Phosphorous, Sulfur, and Silicon, 185, 65 (2010).
6. (a) E. K. Baylis, C. D. Campbell, and J. G. Dingwall, J. Chem. Soc., Perkin Trans. 1, 2845 (1984);
(b) C. Quian and T. Huang, J. Org. Chem., 63, 4125 (1998); (c) J. S. Yadav, B. V. S. Reddy, R.
K Sarita, B. K. Reddy, and A. R. Prasad, Synthesis, 2277 (2001); (d) Y. T. Reddy, P. N. Reddy,
B. S. Kumar, P. Rajput, N. Sreenivasulu, and B. Rajitha, Phosphorous, Sulfur, and Silicon, 182,
161 (2007); (e) A. K. Bhattacharya, and T. Kaur, Synlett, 745 (2007); (f) S. Bhagat and A. K.
Chakraborti, J. Org. Chem., 73, 6209 (2008); (g) S. Sobhani and Z. Tashrifi, Heteroatom Chem.,