Recently, there has been increasing attention and demand
for CF3-containing chiral drugs. Substitution of a methyl
group by a trifluoromethyl group generally influences the
biologic activity by changing the molecule’s solubility,
lipophilicity, and electronic properties. An especially inter-
esting example is Merck’s anti-HIV drug Efavirenz (1) and
its related compound 2, which contain a trifluoromethyl
group at the tetrasubstituted chiral center at a propargyl
position (Figure 1).9 Inspired by the structure of Efavirenz,
Brønsted basic characteristic of copper(I) alkoxide.11 Previ-
ously, we developed a catalytic enantioselective direct
nitrile-aldol reaction of aldehydes using a copper alkoxide-
chiral phosphine complex catalyst.12 This reaction proceeded
through nucleophile generation in situ via selective depro-
tonation from nitriles (pKa ≈ 31 in DMSO) by copper
alkoxide, even in the presence of aliphatic aldehydes
containing more acidic R-protons (pKa ≈ 23). The selective
deprotonation was attributed to the selective coordination of
soft nitriles to the soft metal,13 copper. On the basis of those
previous studies, we expected that “soft” alkynes (pKa ≈
29) would be selectively activated (deprotonated) by copper
alkoxide catalyst in the presence of trifluoromethyl ketones
(pKa ≈ 15). Indeed, copper alkynide formation by mixing
terminal alkynes and copper salts is well-established in
coupling reactions, such as the Castro-Stephens reaction,14
Glaser coupling,15 and Sonogashira coupling.16 The copper
alkynides generated under catalytic in metal conditions,
however, have not been utilized in alkynylation of carbonyl
groups.17,18
Figure 1. Examples of biologically significant molecules contain-
ing CF3-substituted tetrasubstituted carbons.
The reaction between trifluoroacetophenone (3a) and
phenylacetylene (4a; 2 equiv) was first studied with use of
CuOtBu (10 mol %; prepared in situ from CuOTf‚1/2benzene
and KOtBu12b) as a catalyst. Only a trace amount of product
(5aa) was formed in the absence of any ligands (yield )
2%, THF, 60 °C, 22 h). Because the ligands can enhance
the nucleophilicity of copper alkynides, we next examined
the effects of phosphine ligands.19 Xantphos was determined
to be the optimum ligand; product 5aa was obtained in a
quantitative yield in the presence of the CuOtBu-xantphos
complex (Table 1, entry 1). The reaction has a wide substrate
scope with regard to the trifluoromethyl ketones and alkynes
(Table 1). Therefore, chemoselective deprotonation from
alkynes by the soft metal (copper) alkoxide catalyst and the
subsequent addition of the in situ generated copper alkynides
to trifluoromethyl ketones were realized. It is noteworthy
we began a project toward developing a direct catalytic
enantioselective alkynylation of trifluoromethyl ketones.
Although there have been several excellent catalytic enan-
tioselective alkynylations of aldehydes and aldimines re-
ported after the pioneering work of Carreira,10 none of the
methods have been applied to trifluoromethyl ketones.
To establish the basic conditions of catalytic alkynylation
of trifluoromethyl ketones, we focused on the unique
(6) For catalytic enantioselective synthesis of CF3-substituted tertiary
alcohols or amines, see: (a) Wang, X.-J.; Zhao, Y.; Liu, J.-T. Org. Lett.
2007, 9, 1343-1345. (b) Lauzon, C.; Charette, A. B. Org. Lett. 2006, 8,
2743-2745. (c) Martina, S. L. X.; Jagat, R. B. C.; de Vries, J. G.; Feringa,
B.; Minnaard, A. J. Chem. Commun. 2006, 4093-4095. (d) Motoki, R.;
Tomita, D.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2006, 47, 8083-
8086.
(7) Highly electrophilic trifluoropyruvates have been used as substrates
for catalytic enantioselective Friedel-Crafts reaction (7a), ene reaction (7b),
and direct aldol reaction (7c). For examples, see: (a) Bandini, M.; Melloni,
A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550-556. (b)
Mikami, K.; Kakuno, H.; Aikawa, K. Angew. Chem., Int. Ed. 2005, 44,
7257-7260. (c) Gathergood, N.; Juhl, K.; Poulsen, T. B.; Thordrup, K.;
Jørgensen, K. A. Org. Biomol. Chem. 2004, 2, 1077-1085.
(8) Catalytic asymmetric trifluoromethylation (8a) and dihydroxylation
(8b) are alternative methods. For reviews, see: (a) Billard, T.; Langlois, B.
R. Eur. J. Org. Chem. 2007, 891-897. (b) Herrmann, W. A.; Eder, S. J.;
Scherer, W. Angew. Chem., Int. Ed. 1992, 31, 1345-1347.
(11) Tsuda, T.; Hashimoto, T.; Saegusa, T. J. Am. Chem. Soc. 1972, 94,
658-659.
(12) (a) Suto, Y.; Kumagai, N.; Matsunaga, S.; Shibasaki, M. Org. Lett.
2003, 5, 3147-3150. (b) Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Org.
Lett. 2005, 7, 3757-3760.
(13) For similar approaches, see: (a) Kumagai, N.; Matsunaga, S.;
Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 13632-13633. (b) Kumagai,
N.; Matsunaga, S.; Shibasaki, M. Tetrahedron 2007, doi: 10.1016/
j.tet.2007.04.051. (c) Fan, L.; Ozerov, O. V. Chem. Commun. 2005, 4450-
4451.
(14) Stephens, R. D.; Castro, C. E. J. Org. Chem. 1963, 3313-3315.
(9) Corbett, J. W.; Ko, S. S.; Rodgers, J. D.; Gearhart, L. A.; Magnus,
N. A.; Bacheler, L. T.; Diamond, S.; Jeffrey, S.; Klabe, R. M.; Cordova,
B. C.; Garber, S.; Logue, K.; Trainor, G. L.; Anderson, P. S.; Erickson-
Vittanen, S. K. J. Med. Chem. 2000, 43, 2019-2030.
(15) Glaser, C. Ber. 1869, 2, 422-424.
(16) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron, Lett. 1975,
16, 4467-4470.
(17) Addition reactions of copper alkynides to acid chlorides have been
reported: (a) Normant, J. F.; Bourgain, M. Tetrahedron Lett. 1970, 2659-
2662. (b) Lewis, M. D.; Duffy, J. P.; Heck, J. V.; Menes, R. Tetrahedron
Lett. 1988, 29, 2279-2282. In very rare cases, alkynyl cuprates react with
reactive ketones, including a trifluoromethyl alkynyl ketone. (c) Linderman,
R. J.; Lonikar, M. S. J. Org. Chem. 1988, 53, 6013. (d) Palmisano, G.;
Pellegata, R. J. Chem. Soc., Chem. Commun. 1975, 892-893. These
reactions utilized a stoichiometric amount of copper species.
(18) Catalytic enantioselective conjugate alkynylation of in situ prepared
copper alkynides has been reported: (a) Kno¨pfel, T. F.; Carreira, E. M. J.
Am. Chem. Soc. 2003, 125, 6054-6055. (b) Kno¨pfel, T. F.; Zarotti, P.;
Ichikawa, T.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 9682-9683.
(c) Fujimori, S.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 4964-
4967. For examples of catalytic enantioselective addition of copper alkynides
to imines, see refs 10h and 10j.
(10) Selected examples of catalytic enantioselective alkynylation of
aldehydes: (a) Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001,
123, 9687-9688. (b) Fa¨ssler, C. S.; Tomooka, C. S.; Frantz, D. E.; Carreira,
E. M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5843-5845. (c) Takita, R.;
Yakura, K.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127,
13760-13761. (d) Yamashita, M.; Yamada, K.-i.; Tomioka, K. AdV. Synth.
Catal. 2005, 347, 1649-1652. (e) Emmerson, D. P. G.; Hems, W. P.; Davis,
B. G. Org. Lett. 2006, 8, 207-210. Selected examples of catalytic
asymmetric alkynylation of simple ketones with a stoichiometric amount
of zinc alkynides: (f) Cozzi, P. G. Angew. Chem., Int. Ed. 2003, 42, 2895-
2898. (g) Lu, G.; Li, X.; Jia, X.; Chan, W. L.; Chan, A. S. C. Angew. Chem.,
Int. Ed. 2003, 42, 5057-5058. Selected examples of catalytic enantiose-
lective alkynylation of imines: (h) Wei, C.; Li, C. J. J. Am. Chem. Soc.
2002, 124, 5638-5639. (i) Gommermann, N.; Koradin, C.; Polborn, K.;
Knochel, P. Angew. Chem., Int. Ed. 2003, 42, 5763-5766. (j) Bisai, A.;
Singh, V. K. Org. Lett. 2006, 8, 2405-2408.
(19) See the Supporting Information for details. KOtBu itself (in the
absence of Cu salt) did not promote the reaction at all.
2998
Org. Lett., Vol. 9, No. 16, 2007