10.1002/chem.202101475
Chemistry - A European Journal
FULL PAPER
Simonsen, J. Org. Chem. 1996, 61, 6547–6551; c) J. Waser, in
Hypervalent Iodine Chem. (Ed.: T. Wirth), Springer International
Publishing, Cham, 2015, pp. 187–222; d) J. Waser, Synlett 2016, 27,
2761–2773; e) D. P. Hari, S. Nicolai, J. Waser, in PATAIS Chem. Funct.
Groups, American Cancer Society, 2018, pp. 1–58; f) J. Kaschel, D. B.
Werz, Angew. Chem. Int. Ed. 2015, 54, 8876–8878; Angew. Chem.
2015, 127, 9002-9004.
a) E. Stridfeldt, A. Seemann, M. J. Bouma, C. Dey, A. Ertan, B. Olofsson,
Chem. Eur. J. 2016, 22, 16066–16070; b) N. Declas, G. Pisella, J.
Waser, Helv. Chim. Acta 2020, 103, e2000191.
reagents
alkynylation of proline.
in
the
photoredox-catalyzed
decarboxylative
Acknowledgements
[9]
We thank the Swiss National Science Foundation (Grant No.
200020_182798), EPFL and the Agence Nationale de la
Recherche (ANR) with PRCI funding (ANR-17-CE07-0048-01) for
financial support. MDW acknowledges Prof. C. Corminboeuf and
the Laboratory for Computational Molecular Design for providing
computational resources.
[10]
[11]
Y. А. Vlasenko, M. S. Yusubov, A. Shafir, P. S. Postnikov, Chem.
Heterocycl. Compd. 2020, 56, 854–866.
a) R. M. Keefer, L. J. Andrews, J. Am. Chem. Soc. 1959, 81, 5329–
5333; b) W. Wolf, L. Steinberg, Chem. Commun. Lond. 1965, 449; c) H.
J. Barber, M. A. Henderson, J. Chem. Soc. C Org. 1970, 862; d) D. G.
Naae, J. Z. Gougoutas, J. Org. Chem. 1975, 40, 2129–2131; e) K. Prout,
M. N. Stevens, A. Coda, V. Tazzoli, R. A. Shaw, T. Demir, Z.
Naturforsch. B 1976, 31, 687–688; f) T. M. Balthazor, D. E. Godar, B.
R. Stults, J. Org. Chem. 1979, 44, 1447–1449; g) R. A. Moss, S.
Chatterjee, B. Wilk, J. Org. Chem. 1986, 51, 4303–4307; h) V. V.
Zhdankin, R. M. Arbit, M. McSherry, B. Mismash, V. G. Young, J. Am.
Chem. Soc. 1997, 119, 7408–7409; i) V. V. Zhdankin, R. M. Arbit, B. J.
Lynch, P. Kiprof, V. G. Young, J. Org. Chem. 1998, 63, 6590–6596; j)
V. V. Zhdankin, A. E. Koposov, J. T. Smart, R. R. Tykwinski, R.
McDonald, A. Morales-Izquierdo, J. Am. Chem. Soc. 2001, 123, 4095–
4096; k) V. V. Zhdankin, A. Y. Koposov, L. Su, V. V. Boyarskikh, B. C.
Netzel, V. G. Young, Org. Lett. 2003, 5, 1583–1586; l) M. Ochiai, T.
Sueda, K. Miyamoto, P. Kiprof, V. V. Zhdankin, Angew. Chem. Int. Ed.
2006, 45, 8203–8206; Angew. Chem. 2006, 118, 8383-8386; m) A.
Yoshimura, M. T. Shea, C. L. Makitalo, M. E. Jarvi, G. T. Rohde, A.
Saito, M. S. Yusubov, V. V. Zhdankin, Beilstein J. Org. Chem. 2018, 14,
1016–1020.
H. Gu, C. Wang, Org. Biomol. Chem. 2015, 13, 5880–5884.
D. P. Hari, L. Schouwey, V. Barber, R. Scopelliti, F. Fadaei‐Tirani, J.
Waser, Chem. Eur. J. 2019, 25, 9522–9528.
T.-Y. Sun, X. Wang, H. Geng, Y. Xie, Y.-D. Wu, X. Zhang, H. F.
Schaefer III, Chem. Commun. 2016, 52, 5371–5374.
X.-G. Yang, K. Zheng, C. Zhang, Org. Lett. 2020, 22, 2026–2031.
Y. A. Vlasenko, P. S. Postnikov, M. E. Trusova, A. Shafir, V. V.
Zhdankin, A. Yoshimura, M. S. Yusubov, J. Org. Chem. 2018, 83,
12056–12070.
a) A. Boelke, E. Lork, B. J. Nachtsheim, Chem. Eur. J. 2018, 24, 18653–
18657; b) A. Boelke, Y. A. Vlasenko, M. S. Yusubov, B. J. Nachtsheim,
P. S. Postnikov, Beilstein J. Org. Chem. 2019, 15, 2311–2318; c) A.
Boelke, B. J. Nachtsheim, Adv. Synth. Catal. 2020, 362, 184–191.
A. Vaish, K. D. Sayala, N. V. Tsarevsky, Tetrahedron Lett. 2019, 60,
150995.
Keywords: hypervalent iodine, sulfoximine, alkynyl transfer
[1]
a) T. Wirth, Y. Kita, Eds., Hypervalent Iodine Chemistry: Modern
Developments in Organic Synthesis, Springer, Berlin, 2003; b) T. Wirth,
Angew. Chem. Int. Ed. 2005, 44, 3656–3665; c) V. V. Zhdankin, P. J.
Stang, Chem. Rev. 2008, 108, 5299–5358; d) V. V. Zhdankin,
Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic
Applications of Polyvalent Iodine Compounds, John Wiley & Sons, Inc,
Chichester, West Sussex, 2014; e) M. S. Yusubov, V. V. Zhdankin,
Resour.-Effic. Technol. 2015, 1, 49–67; f) A. Yoshimura, V. V. Zhdankin,
Chem. Rev. 2016, 116, 3328–3435.
[2]
a) V. Zhdankin, Curr. Org. Synth. 2005, 2, 121–145; b) Y. Li, D. P. Hari,
M. V. Vita, J. Waser, Angew. Chem. Int. Ed. 2016, 55, 4436–4454;
Angew. Chem. 2016, 128, 4512-4531; c) D. P. Hari, P. Caramenti, J.
Waser, Acc. Chem. Res. 2018, 51, 3212–3225.
[12]
[13]
[3]
[4]
a) D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155–4156; b) M.
M. Heravi, T. Momeni, V. Zadsirjan, L. Mohammadi, Curr. Org. Synth.
2021, 18, 125–196.
[14]
[15]
[16]
a) V. V. Zhdankin, C. J. Kuehl, A. P. Krasutsky, J. T. Bolz, B. Mismash,
J. K. Woodward, A. J. Simonsen, Tetrahedron Lett. 1995, 36, 7975–
7978; b) R. Frei, T. Courant, M. D. Wodrich, J. Waser, Chem. Eur. J.
2015, 21, 2662–2668; c) M. V. Vita, P. Caramenti, J. Waser, Org. Lett.
2015, 17, 5832–5835; d) F. Le Vaillant, M. D. Wodrich, J. Waser, Chem.
Sci. 2017, 8, 1790–1800; e) J. Davies, N. S. Sheikh, D. Leonori, Angew.
Chem. Int. Ed. 2017, 56, 13361–13365; Angew. Chem. 2017, 129,
13546-13550; f) M.-X. Sun, Y.-F. Wang, B.-H. Xu, X.-Q. Ma, S.-J.
Zhang, Org. Biomol. Chem. 2018, 16, 1971–1975; g) S. P. Morcillo, E.
M. Dauncey, J. H. Kim, J. J. Douglas, N. S. Sheikh, D. Leonori, Angew.
Chem. Int. Ed. 2018, 57, 12945–12949; Angew. Chem. 2018, 130,
13127-13131; h) N. Declas, F. Le Vaillant, J. Waser, Org. Lett. 2019,
21, 524–528.
[17]
[18]
[19]
T. Ohwada, N. Tani, Y. Sakamaki, Y. Kabasawa, Y. Otani, M. Kawahata,
K. Yamaguchi, Proc. Natl. Acad. Sci. 2013, 110, 4206–4211.
H. Jaffe, J. E. Leffler, J. Org. Chem. 1975, 40, 797–799.
a) J. Kalim, T. Duhail, T.-N. Le, N. Vanthuyne, E. Anselmi, A. Togni, E.
Magnier, Chem. Sci. 2019, 10, 10516–10523; b) J. Kalim, T. Duhail, E.
Pietrasiak, E. Anselmi, E. Magnier, A. Togni, Chem. Eur. J. 2021, 27,
2638–2642.
[20]
[21]
[5]
a) A. P. Krasutsky, C. J. Kuehl, V. V. Zhdankin, Synlett 1995, 1995,
1081–1082; b) V. V. Zhdankin, A. P. Krasutsky, C. J. Kuehl, A. J.
Simonsen, J. K. Woodward, B. Mismash, J. T. Bolz, J. Am. Chem. Soc.
1996, 118, 5192–5197; c) M.-Z. Lu, C.-Q. Wang, T.-P. Loh, Org. Lett.
2015, 17, 6110–6113; d) W. Kong, N. Fuentes, A. García-Domínguez,
E. Merino, C. Nevado, Angew. Chem. Int. Ed. 2015, 54, 2487–2491;
Angew. Chem. 2015, 127, 2517-2521; e) Z.-L. Li, X.-H. Li, N. Wang, N.-
Y. Yang, X.-Y. Liu, Angew. Chem. Int. Ed. 2016, 55, 15100–15104;
Angew. Chem. 2016, 128, 15324-15328; f) Y. Wang, G.-X. Li, G. Yang,
G. He, G. Chen, Chem. Sci. 2016, 7, 2679–2683; g) S. Bertho, R. Rey‐
Rodriguez, C. Colas, P. Retailleau, I. Gillaizeau, Chem. Eur. J. 2017,
23, 17674–17677; h) G. H. Lonca, D. Y. Ong, T. M. H. Tran, C. Tejo, S.
Chiba, F. Gagosz, Angew. Chem. Int. Ed. 2017, 56, 11440–11444;
Angew. Chem. 2017, 129, 11598-11602; i) S. Alazet, J. Preindl, R.
Simonet-Davin, S. Nicolai, A. Nanchen, T. Meyer, J. Waser, J. Org.
Chem. 2018, 83, 12334–12356; j) D. Wu, S.-S. Cui, Y. Lin, L. Li, W. Yu,
J. Org. Chem. 2019, 84, 10978–10989; k) X. Li, X. Qi, C. Hou, P. Chen,
G. Liu, Angew. Chem. Int. Ed. 2020, 59, 17239–17244; Angew. Chem.
2020, 132, 17392-17397.
[22]
[23]
D. C. Braddock, G. Cansell, S. A. Hermitage, Chem. Commun. 2006,
2483-2485.
Reagents Nomenclature: TIPS-H,Ts-EBZI (3) = substituent on alkyne-
substituent on the nitrogen linked to the iodine, substituent on the other
nitrogen-EthynylBenziodazoIImine; TIPS-Ts-EBZI (4) = substituent on
alkyne-substituent on both nitrogen-EthynylBenziodazoIImine; TIPS-
Ts-EBz (5) = substituent on alkyne-substituent on the nitrogen linked to
the iodine-EthynylBenziodazoIe; TIPS-CF3-EBS (6) = substituent on
alkyne-substituent on the sulfoximine-EthynylBenziodoSulfoximine.
a) S. Dalai, V. N. Belov, S. Nizamov, K. Rauch, D. Finsinger, A. de
Meijere, Eur. J. Org. Chem. 2006, 2006, 2753–2765; b) M. Baeten, B.
U. W. Maes, Adv. Synth. Catal. 2016, 358, 826–833.
a) P. K. Sajith, C. H. Suresh, Inorg. Chem. 2012, 51, 967–977; b) P. K.
Sajith, C. H. Suresh, Inorg. Chem. 2013, 52, 6046–6054.
L. A. Aronica, G. Albano, L. Giannotti, E. Meucci, Eur. J. Org. Chem.
2017, 2017, 955–963.
A.-L. Barthelemy, V. Certal, G. Dagousset, E. Anselmi, L. Bertin, L.
Fabien, B. Salgues, P. Courtes, C. Poma, Y. El-Ahmad, E. Magnier,
Org. Process Res. Dev. 2020, 24, 704–712.
a) A. Tota, M. Zenzola, S. J. Chawner, S. St John-Campbell, C. Carlucci,
G. Romanazzi, L. Degennaro, J. A. Bull, R. Luisi, Chem. Commun. 2017,
53, 348-351; b) J.-F. Lohier, T. Glachet, H. Marzag, A.-C. Gaumont, V.
Reboul, Chem.Commun. 2017, 53, 2064-2067.
[24]
[25]
[26]
[27]
[6]
[7]
a) P. Eisenberger, S. Gischig, A. Togni, Chem. Eur. J. 2006, 12, 2579–
2586; b) J. Charpentier, N. Früh, A. Togni, Chem. Rev. 2015, 115, 650–
682.
a) M. S. Yusubov, R. Y. Yusubova, V. N. Nemykin, V. V. Zhdankin, J.
Org. Chem. 2013, 78, 3767–3773; b) P. Caramenti, S. Nicolai, J. Waser,
Chem. Eur. J. 2017, 23, 14702–14706; c) E. Grenet, A. Das, P.
Caramenti, J. Waser, Beilstein J. Org. Chem. 2018, 14, 1208–1214; d)
P. Caramenti, R. K. Nandi, J. Waser, Chem. Eur. J. 2018, 24, 10049–
10053; e) E. Grenet, J. Waser, Org. Lett. 2018, 20, 1473–1476.
a) M. Ochiai, Y. Masaki, M. Shiro, J. Org. Chem. 1991, 56, 5511–5513;
b) V. V. Zhdankin, C. J. Kuehl, A. P. Krasutsky, J. T. Bolz, A. J.
[28]
[29]
Deposition Numbers 2072273 (for 3), 2072274 (for 4), 2072275 (for 5)
and 2072276 (for 6) contain the supplementary crystallographic data for
this paper. These data are provided free of charge by the joint
[8]
This article is protected by copyright. All rights reserved.