Communication
Organic & Biomolecular Chemistry
In summary, an A1/A2 disubstituted pillar[5]arene (P5-OXD)
was first synthesised by modifying the pillar[5]arene skeleton
with a 1,3,4-oxadiazole subunit and a cyanobutoxy moiety, and
P5-OXD was used to fabricate the supramolecular brush poly-
mers by host–guest interactions between electron-rich pillarar-
ene cavities and proper-sized neutral cyanobutoxy moieties.
Particularly, the bigger-sized electron-deficient 1,3,4-oxadia-
zole subunit stays outside the pillararene cavities after the for-
mation of host–guest inclusions, functioning as “brushes” to
enhance the capacity of self-assembled supramolecular
materials in coordinating with metal ions such as Cu2+. As
confirmed by NMR, SEM and spectral studies, after the
addition of Cu2+ ions, the supramolecular brush polymer exhi-
bits different structural information in accordance with fluo-
rescence quenching, indicating the possibility of changing
into cross-linked supramolecular networks. Thus, this supra-
molecular brush polymer has potential applications in fluo-
rescent chemosensors for metal cations.
J. M. Racicot and M. Levine, Chem. Rev., 2019, 119, 322–
477.
4 (a) J. X. He, Y. M. Zhang, J. P. Hu, Y. J. Li, Q. Zhang,
W. J. Qu, H. Yao, T. B. Wei and Q. Lin, Appl. Organomet.
Chem., 2020, 34, e5519; (b) X. F. Ji, X. D. Chi, M. Ahmed,
L. L. Long and J. L. Sessler, Acc. Chem. Res., 2019, 52, 1915–
1927; (c) Y. Z. Liu, Y. Y. Zhang, H. T. Z. Zhu, H. Wang,
W. Tian and B. B. Shi, Mater. Chem. Front., 2018, 2, 1568–
1573; (d) L. Shao, J. Yang and B. Hua, Polym. Chem., 2018,
9, 1293–1297.
5 J. W. Yang, R. B. Bai, B. H. Chen and Z. G. Suo, Adv. Funct.
Mater., 2020, 30, 1901693.
6 (a) W. W. Feng, M. Jin, K. Yang, Y. X. Pei and Z. C. Pei,
Chem. Commun., 2018, 54, 13626–13640; (b) X. Li, Z. Li and
Y. W. Yang, Adv. Mater., 2018, 30, e1800177; (c) Y. F. Han,
Y. K. Tian, Z. J. Li and F. Wang, Chem. Soc. Rev., 2018, 47,
5165–5176; (d) O. J. G. M. Goor, S. I. S. Hendrikse,
P. Y. W. Dankersand and E. W. Meijer, Chem. Soc. Rev.,
2017, 46, 6621–6637; (e) E. Krieg, M. M. C. Bastings,
P. Beseniusand and B. Rybtchinski, Chem. Rev., 2016, 116,
2414–2477; (f) X. Ma and Y. L. Zhao, Chem. Rev., 2015, 115,
7794–7839.
7 T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi and
Y. Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022–5023.
8 (a) L. S. Yakimova, D. N. Shurpik, L. H. Gilmanova,
A. R. Makhmutova, A. Rakhimbekova and I. I. Stoikov, Org.
Biomol. Chem., 2016, 14, 4233–4238; (b) D. Dai, Z. Li,
J. Yang, C. Wang, J.-R. Wu, Y. Wang, D. Zhang and
Y.-W. Yang, J. Am. Chem. Soc., 2019, 141, 4756–4763;
(c) K.-A. Li, Z. Wang, C.-D. Xie, T. Chen, H. Qiang, Y. A. Liu,
X.-S. Jia, W.-B. Hu and K. Wen, Org. Biomol. Chem., 2019,
17, 4975–4978.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This work was financially supported by the Natural Science
Foundation of Tianjin (No. 18JCYBJC20700), which is grate-
fully acknowledged. HZ is thankful for the financial support
for academic research studies from “Young Talent Support
Plan” (No. 0001-7121191207 and No. 0107-712110510706) of
Xi’an Jiaotong University and “Thousand Talents Program” of
Shaanxi Province (No. 0578-7122200046).
9 K. Jie, Y. Zhou, E. Li and F. Huang, Acc. Chem. Res., 2018,
51, 2064–2072.
10 S. Guo, Y. Song, Y. He, X.-Y. Hu and L. Wang, Angew.
Chem., Int. Ed., 2018, 57, 3163–3167.
11 W. Si, P. Y. Xin, Z. T. Li and J. L. Hou, Acc. Chem. Res., 2015,
48, 1612–1619.
Notes and references
1 (a) H. Li, Y. Yang, F. F. Xu, T. X. Liang, H. R. Wen and
W. Tian, Chem. Commun., 2019, 55, 271–285; (b) Z. F. He, 12 N. Song, X.-Y. Lou, L. Ma, H. Gao and Y.-W. Yang,
Y. F. Huo, C. Wang, D. Pan, B. B. Dong, M. L. Wang, Theranostics, 2019, 9, 3075–3093.
L. Guo, Z. L. Hu and Z. H. Guo, Chem. Commun., 2020, 56, 13 (a) H. C. Zhang and J. Han, Org. Biomol. Chem., 2020, 18,
9288–9291; (c) J. Park, S. Murayama, M. Osaki,
H. Yamaguchi, A. Harada, G. Matsuba and Y. Takashima,
Adv. Mater., 2020, 32, 2002008; (d) J. Hatai,
C. Hirschhaeuser, J. Niemeyer and C. Schmuck, ACS Appl.
4894–4905; (b) H. Li, Z. Duan, Y. Yang, F. Xu, M. Chen,
T. Liang, Y. Bai and R. Li, Macromolecules, 2020, 53, 4255–
4263; (c) H. Li, W. Chen, F. Xu, X. Fan, T. Liang, X. Qi and
W. Tian, Macromol. Rapid Commun., 2018, 39, 1800053.
Mater. Interfaces, 2020, 12, 2107–2115; (e) C. H. Xu, 14 (a) X. Y. Yang, W. Q. Cai, S. Dong, K. Zhang, J. Zhang,
J. D. Nie, W. C. Wu, Z. J. Zheng and Y. K. Chen, ACS
Sustainable Chem. Eng., 2019, 7, 15778–15789;
(f) T. Kakuta, T. A. Yamagishi and T. Ogoshi, Acc. Chem.
Res., 2018, 51, 1656–1666.
F. H. Huang, F. Huang and Y. Cao, ACS Macro Lett., 2017, 6,
647–651; (b) S. L. Wang, Y. L. Wang, Z. X. Chen, Y. J. Lin,
L. H. Weng, K. Han, J. Li, X. S. Jia and C. J. Li, Chem.
Commun., 2015, 51, 3434–3437.
2 (a) B. Li, T. He, Y. Q. Fan, X. C. Yuan, H. Y. Qiu and 15 (a) J. F. Chen, Q. Lin, Y. M. Zhang, H. Yao and T. B. Wei,
S. C. Yin, Chem. Commun., 2019, 55, 8036–8059;
(b) Z. C. Gao, C. P. Wei, Y. F. Han, M. Yuan, X. Z. Yan and
F. Wang, Chin. J. Polym. Sci., 2018, 36, 399–405.
Chem. Commun., 2017, 53, 13296–13311; (b) L. L. Yang,
X. X. Tan, Z. Q. Wang and X. Zhang, Chem. Rev., 2015, 115,
7196–7239.
3 (a) T. T. Liu, S. D. Wang, Y. R. Li, H. X. Yan and W. Tian, 16 A. Paun, N. D. Hadade, C. C. Paraschivescu and
Chem. – Eur. J., 2018, 24, 4239–4244; (b) T. L. Mako,
M. Matache, J. Mater. Chem. C, 2016, 4, 8596–8610.
1290 | Org. Biomol. Chem., 2021, 19, 1287–1291
This journal is © The Royal Society of Chemistry 2021