Organic Letters
Detailed experimental procedures, characterization data,
Letter
catalyzed site-selective alkylation of unactivated C(sp3)-H bonds. J.
Am. Chem. Soc. 2014, 136, 1789−1792. (f) Matsubara, T.; Asako, S.;
Ilies, L.; Nakamura, E. Synthesis of anthranilic acid derivatives
through iron-catalyzed ortho amination of aromatic carboxamides
with N-chloroamines. J. Am. Chem. Soc. 2014, 136, 646−649. (g) Pan,
F.; Shen, P. X.; Zhang, L. S.; Wang, X.; Shi, Z. J. Direct arylation of
primary and secondary sp3 C-H bonds with diarylhyperiodonium
salts via Pd catalysis. Org. Lett. 2013, 15, 4758−4761. (h) Marcelli, T.;
van Maarseveen, J. H.; Hiemstra, H. Cupreines and cupreidines: an
emerging class of bifunctional cinchona organocatalysts. Angew.
Chem., Int. Ed. 2006, 45, 7496−7504. (i) Chen, Z.; Wang, B.;
Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Transition metal-catalyzed C−H
bond functionalizations by the use of diverse directing groups. Org.
Chem. Front. 2015, 2, 1107−1295. (j) Liu, J.; Chen, G.; Tan, Z.
Copper-Catalyzed or -Mediated C-H Bond Functionalizations
Assisted by Bidentate Directing Groups. Adv. Synth. Catal. 2016,
358, 1174−1194. (k) Rit, R. K.; Yadav, M. R.; Ghosh, K.; Sahoo, A. K.
Reusable directing groups [8-aminoquinoline, picolinamide, sulfox-
imine] in C(sp3)−H bond activation: present and future. Tetrahedron
1
13
spectra copies of the H, C NMR for obtained
products, and X-ray data of 3a (PDF)
CCDC 1842336 contains the supplementary crystallographic
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
*
ORCID
2
015, 71, 4450−4459.
Notes
(3) Construction of quinoline motifs via cyclization of anilines, see:
(a) Kouznetsov, V. V.; Mendez, L. Y. V.; Gomez, C. M. M. Recent
progress in the synthesis of quinolines. Curr. Org. Chem. 2005, 9,
1
41−161. (b) Prajapati, S. M.; Patel, K. D.; Vekariya, R. H.; Panchal,
The authors declare no competing financial interest.
S. N.; Patel, H. D. Recent advances in the synthesis of quinolines: a
review. RSC Adv. 2014, 4, 24463−24476. (c) Ramann, G. A.; Cowen,
B. J. Recent Advances in Metal-Free Quinoline Synthesis. Molecules
ACKNOWLEDGMENTS
The authors thank the Natural Science Foundation of China
Nos. 21676076, 21878071), the Hu-Xiang High Talent
■
(
2
016, 21, 986−1008. (d) Shao, Y. D.; Dong, M. M.; Wang, Y. A.;
Cheng, P. M.; Wang, T.; Cheng, D. J. Organocatalytic Atroposelective
Friedlander Quinoline Heteroannulation. Org. Lett. 2019, 21, 4831−
836. (e) Gu, Z.-Y.; Zhu, T.-H.; Cao, J.-J.; Xu, X.-P.; Wang, S.-Y.; Ji,
S.-J. Palladium-Catalyzed Cascade Reactions of Isocyanides with
Enaminones: Synthesis of 4-Aminoquinoline Derivatives. ACS Catal.
Project in Hunan Province (2018RS3042), and Recruitment
Program for Foreign Experts of China (WQ20164300353) for
financial support.
4
2
014, 4, 49−52. (f) Chen, P.; Nan, J.; Hu, Y.; Ma, Q.; Ma, Y. Ru(II)-
REFERENCES
Catalyzed/NH2-Assisted Selective Alkenyl C-H [5 + 1] Annulation of
Alkenylanilines with Sulfoxonium Ylides to Quinolines. Org. Lett.
■
(
1) (a) Michael, J. P. Quinoline, quinazoline and acridone alkaloids.
2
(
(
019, 21, 4812−4815.
4) Construction of quinoline motifs via cyclization of alkynes, see:
a) Wang, Y.; Chen, C.; Peng, J.; Li, M. Copper(II)-catalyzed three-
Nat. Prod. Rep. 2008, 25, 166−187. (b) Kaur, K.; Jain, M.; Reddy, R.
P.; Jain, R. Quinolines and structurally related heterocycles as
antimalarials. Eur. J. Med. Chem. 2010, 45, 3245−3264. (c) Colomb,
J.; Becker, G.; Fieux, S.; Zimmer, L.; Billard, T. Syntheses,
radiolabelings, and in vitro evaluations of fluorinated PET radio-
ligands of 5-HT6 serotoninergic receptors. J. Med. Chem. 2014, 57,
component cascade annulation of diaryliodoniums, nitriles, and
alkynes: a regioselective synthesis of multiply substituted quinolines.
Angew. Chem., Int. Ed. 2013, 52, 5323−5327. (b) Rode, N. D.; Arcadi,
A.; Di Nicola, A.; Marinelli, F.; Michelet, V. Gold-Catalyzed Cascade
Reaction of beta-(2-Aminophenyl)-alpha,beta-ynones with Ynamides:
A Sequential Route to Polysubstituted 2-Aminoquinolines. Org. Lett.
3
884−3890. (d) O’Neill, P. M.; Bray, P. G.; Hawley, S. R.; Ward, S.
A.; Park, B. K. 4-AminoquinolinesPast, present, and future; A
chemical perspective. Pharmacol. Ther. 1998, 77, 29−58. (e) Koh, E.
J.; El-Gamal, M. I.; Oh, C. H.; Lee, S. H.; Sim, T.; Kim, G.; Choi, H.
S.; Hong, J. H.; Lee, S. G.; Yoo, K. H. New diarylamides and
diarylureas possessing 8-amino(acetamido)quinoline scaffold: syn-
thesis, antiproliferative activities against melanoma cell lines, kinase
inhibition, and in silico studies. Eur. J. Med. Chem. 2013, 70, 10−21.
2
018, 20, 5103−5106. (c) Jia, R.; Li, B.; Liang, R.; Zhang, X.; Fan, X.
Tunable Synthesis of Indolo[3,2- c]quinolines or 3-(2-Aminophenyl)-
quinolines via Aerobic/Anaerobic Dimerization of 2-Alkynylanilines.
Org. Lett. 2019, 21, 4996−5001. (d) Cacchi, S.; Fabrizi, G.; Marinelli,
F.; Moro, L.; Pace, P. Palladium-catalysed hydroarylation and
hydrovinylation of 3,3-dialkoxy-1-aryl-1-propynes. An approach to
3-aryl- and 3-vinylquinolines. Tetrahedron 1996, 52, 10225−10240.
(5) Modification of quinoline scaffolds on the C2 position, see:
(a) Berman, A. M.; Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Rh(I)-
catalyzed direct arylation of pyridines and quinolines. J. Am. Chem.
Soc. 2008, 130, 14926−14927. (b) Tobisu, M.; Hyodo, I.; Chatani, N.
Nickel-catalyzed reaction of arylzinc reagents with N-aromatic
heterocycles: a straightforward approach to C-H bond arylation of
electron-deficient heteroaromatic compounds. J. Am. Chem. Soc. 2009,
131, 12070−12071.
(6) Modification of quinoline scaffolds on the C3 position, see:
(a) Wasa, M.; Worrell, B. T.; Yu, J. Q. Pd0/PR3-Catalyzed Arylation
of Nicotinic and Isonicotinic Acid Derivatives. Angew. Chem., Int. Ed.
2010, 49, 1275−1277. (b) Sun, K.; Lv, Y.; Wang, J.; Sun, J.; Liu, L.;
Jia, M.; Liu, X.; Li, Z.; Wang, X. Regioselective, Molecular Iodine-
Mediated C3 Iodination of Quinolines. Org. Lett. 2015, 17, 4408−
4411. (c) He, Y.; Wu, Z.; Ma, C.; Zhou, X.; Liu, X.; Wang, X.; Huang,
G. Palladium-Catalyzed Selective C-H Activation: A Simple Method
to Synthesize C-3 Site Arylated Quinoline Derivatives. Adv. Synth.
(
f) Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of
Heterocycles: Structures, Reactions, Synthesis, and Applications, 3rd ed.;
John Wiley & Sons, 2013. (g) Jentsch, N. G.; Hart, A. P.; Hume, J. D.;
Sun, J.; McNeely, K. A.; Lama, C.; Pigza, J. A.; Donahue, M. G.; Kessl,
J. J. Synthesis and Evaluation of Aryl Quinolines as HIV-1 Integrase
Multimerization Inhibitors. ACS Med. Chem. Lett. 2018, 9, 1007−
012.
2) 8-Aminoquinoline as directing group or ligands, see: (a) Zaitsev,
V. G.; Shabashov, D.; Daugulis, O. Highly regioselective arylation of
1
(
sp3 C-H bonds catalyzed by palladium acetate. J. Am. Chem. Soc.
2
005, 127, 13154−13155. (b) Castro, L. C. M.; Chatani, N. Nickel
Catalysts/N,N′-Bidentate Directing Groups: An Excellent Partnership
in Directed C−H Activation Reactions. Chem. Lett. 2015, 44, 410−
4
21. (c) Corbet, M.; De Campo, F. 8-Aminoquinoline: a powerful
directing group in metal-catalyzed direct functionalization of C-H
bonds. Angew. Chem., Int. Ed. 2013, 52, 9896−9898. (d) Rouquet, G.;
Chatani, N. Catalytic functionalization of C(sp2)-H and C(sp3)-H
bonds by using bidentate directing groups. Angew. Chem., Int. Ed.
2
013, 52, 11726−11743. (e) Wu, X.; Zhao, Y.; Ge, H. Nickel-
D
Org. Lett. XXXX, XXX, XXX−XXX