GO and CDG as Catalysts for Suzuki-Miyaura Reaction
A R T I C L E S
and carbonyl and carboxyl groups are placed at the edges.15,16
Thermal or chemical reduction of GO leads to an expanded
graphite or even exfoliated graphitic nanoplatelets and CDG
sheets, respectively.2,17-19
by slow intercalation of PdCl2 into graphite in a chlorine
atmosphere with subsequent reduction to Pd nanoparticles.27
Several Pd nanoparticle catalysts for C-C coupling reactions
such as the Mizoroki-Heck reaction28 and the Suzuki-Miyaura
reaction29 have been described in the literature.30-32 Im-
mobilization or stabilization procedures of Pd nanoparticles in
ionic liquids,33 polymers,34 organic-inorganic fluorinated hybrid
materials,35 and glass-polymer composite materials36 as well
as on common inorganic substrates such as carbon,37-40 silica,41
alumina,42 or zeolites43 are known to yield active catalysts for
C-C coupling reactions.
In the present study, we exploit GO and its CDG derivatives
as a support for palladium clusters and nanoparticles. The
Suzuki-Miyaura reaction has been selected as model reaction
for evaluating GO- and CDG-based palladium catalysts.
Because of the functional groups present in GO, the sorption
and intercalation of ions and molecules is possible.12,20 This
feature, together with the high specific surface area of GO and
CDG of 400 m2 g-1 up to 1500 m2 g-1, makes them promising
materials for catalytic applications.2,21 To date, there are only
a few examples of GO-based materials as catalysts.21–23 More
than 50 years ago, Boehm et al. investigated the chemistry of
GO in depth and used different methods for the determination
of the specific surface of CDG inter alia the catalytic production
of HBr.21 Later, in a USSR patent, Titelman et al. described
the deposition of NiO and CuO by thermal reduction of metal
amine precursors on a GO support as a catalyst for removing
oxygen impurities from industrial gases.22 At the same time,
Kyotani et al. synthesized carbon-metal composites by thermal
treatment of Na+, Ca2+, Cu2+, and Fe2+-exchanged graphite
oxide.24 Although they did not describe any catalytic applica-
tions, they characterized the obtained materials in detail and
observed a magnetic anisotropy for the Fe sample. Kovtyukhova
and co-workers investigated the intercalation of different transi-
tion-metal complexes in GO.25 They also synthesized nanom-
eter-sized clusters of Cu and Ni in a layered carbon matrix by
thermal breakdown of their intercalated GOs but did not test
the catalytic performance of these materials.26 Mastalir et al.
were the first to determine the high catalytic activity and
selectivity of their nano-Pd/GO systems in liquid-phase hydro-
genation of alkynes.23 Ion exchange of GO with a Pd complex
and subsequent reduction to nanosized crystallites by H2 resulted
in a catalyst that surpassed the activity of commercial supported
Pd catalysts such as Pd on activated carbon (Pd/C) and Pd
graphimet. The latter is a rather uncommon catalyst synthesized
(27) (a) Croft, R. C. Aust. J. Chem. 1956, 9, 184–193. (b) Ebert, L. B. J.
Mol. Catal. 1982, 15, 275–296. (c) Lalancette, J.-M. (Ventron Corp.).
´
U.S. Patent 3847963, 1974. (d) Mastalir, A.; Notheisz, F.; Barto´k,
M.; Haraszti, T.; Kira´ly, Z.; De´ka´ny, I. Appl. Catal., A 1996, 144,
237–248.
(28) (a) Beletskaya, I. P.; Cheprakov, A. V. Chem. ReV. 2000, 100, 3009–
3066. (b) Heck, R. F. Acc. Chem. Res. 1979, 12, 146–151. (c) Heck,
R. F.; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320–2322. (d)
Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44,
581–583. (e) Whitcombe, N. J.; Hii, K. K.; Gibson, S. E. Tetrahedron
2001, 57, 7449–7476.
(29) (a) Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1979,
866–867. (b) Suzuki, A. Pure Appl. Chem. 1994, 66, 213–222. (c)
Deng, Y.; Gong, L.; Mi, A.; Liu, H.; Jiang, Y. Synthesis 2003, 337–
339. (d) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979,
3437–3440. (e) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457–
2483. (f) Suzuki, A. J. Organomet. Chem. 1999, 576, 147–168.
(30) Djakovich, L.; Ko¨hler, K.; de Vries, J. G. The Role of Palladium
Nanoparticles as Catalysts for Carbon-Carbon Coupling Reactions
in Nanoparticles and Catalysis, 1st ed.; Astruc, D., Ed.; Wiley-VCH:
Weinheim, Germany, 2008; pp 303-348.
(31) Phan, N. T. S.; Van Der Sluys, M.; Jones, C. W. AdV. Synth. Catal.
2006, 348, 609–679.
(32) Yin, L. X.; Liebscher, J. Chem. ReV. 2007, 107, 133–173.
(33) (a) Xu, L.; Chen, W.; Xiao, J. Organometallics 2000, 19, 1123–1127.
(b) Deshmukh, R. R.; Rajagopal, R.; Srinivasan, K. V. Chem. Commun.
2001, 1544–1545. (c) Yang, X.; Fei, Z.; Zhao, D.; Ang, W. H.; Li,
Y.; Dyson, P. J. Inorg. Chem. 2008, 47, 3292–3297.
(15) Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. J. Phys. Chem. B 1998,
102, 4477–4482.
(16) (a) Boukhvalov, D. W.; Katsnelson, M. I. J. Am. Chem. Soc. 2008,
130, 10697–10701. (b) Kudin, K. N.; Ozbas, B.; Schniepp, H. C.;
Prud’homme, R. K.; Aksay, I. A.; Car, R. Nano Lett. 2008, 8, 36–41.
(17) Schniepp, H. C.; Li, J.-L.; McAllister, M. J.; Sai, H.; Herrera-Alonso,
M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.;
Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535–8539.
(34) (a) Li, Y.; Hong, X. M.; Collard, D. M.; El-Sayed, M. A. Org. Lett.
2000, 2, 2385–2388. (b) Hu, J.; Liu, Y. B. Langmuir 2005, 21, 2121–
2123. (c) Narayanan, R.; El-Sayed, M. A. J. Am. Chem. Soc. 2003,
125, 8340–8347. (d) Narayanan, R.; El-Sayed, M. A. Langmuir 2005,
21, 2027–2033. (e) Gallon, B. J.; Kojima, R. W.; Kaner, R. B.;
Diaconescu, P. L. Angew. Chem., Int. Ed. 2007, 46, 7251–7254.
(35) Niembro, S.; Shafir, A.; Vallribera, A.; Alibe´s, R. Org. Lett. 2008,
10, 3215–3218.
(18) (a) Boehm, H.-P.; Clauss, A.; Hofmann, U.; Fischer, G. O. Z.
Naturforsch. 1962, 17, 150. (b) Bourlinos, A. B.; Gournis, D.; Petridis,
D.; Szabo´, T.; Szeri, A.; De´ka´ny, I. Langmuir 2003, 19, 6050–6055.
(c) Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G.
Nat. Nanotechnol. 2008, 3, 101–105.
(36) Mennecke, K.; Cecilia, R.; Glasnov, T. N.; Gruhl, S.; Vogt, C.;
Feldhoff, A.; Vargas, M. A. L.; Kappe, C. O.; Kunz, U.; Kirschning,
A. AdV. Synth. Catal. 2008, 350, 717–730.
(19) (a) Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen,
S. T.; Ruoff, R. S. J. Mater. Chem. 2006, 16, 155–158. (b) Stankovich,
S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.;
Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558–
1565.
(37) (a) Marck, G.; Villiger, A.; Buchecker, R. Tetrahedron Lett. 1994,
35, 3277–3280. (b) Tagata, T.; Nishida, M. J. Org. Chem. 2003, 68,
9412–9415. (c) Arvela, R. K.; Leadbeater, N. E. Org. Lett. 2005, 7,
2101–2104. (d) Sajiki, H.; Kurita, T.; Kozaki, A.; Zhang, G.; Kitamura,
Y.; Maegawa, T.; Hirota, K. Synthesis 2005, 537–542. (e) Maegawa,
T.; Kitamura, Y.; Sako, S.; Udzu, T.; Sakurai, A.; Tanaka, A.;
Kobayashi, Y.; Endo, K.; Bora, U.; Kurita, T.; Kozaki, A.; Monguchi,
Y.; Sajiki, H. Chem.-Eur. J. 2007, 13, 5937–5943.
(20) (a) Thiele, H. Kolloid-Z. 1937, 80, 1–20. (b) Slabaugh, W. H.; Seiler,
B. C. J. Phys. Chem. 1962, 66, 396–401. (c) De´ka´ny, I.; Kru¨ger-
Grasser, R.; Weiss, A. Colloid Polym. Sci. 1998, 276, 570–576.
(21) Boehm, H.-P.; Clauss, A.; Fischer, G. O.; Hofmann, U. Z. Anorg. Allg.
Chem. 1962, 316, 119–127.
(38) (a) Heidenreich, R. G.; Ko¨hler, K.; Krauter, J. G. E.; Pietsch, J. Synlett
2002, 1118–1122. (b) Huang, J.; Wang, D.; Hou, H.; You, T. AdV.
Funct. Mater. 2008, 18, 441–448.
(22) Titelman, G. I.; Karamanenko, S. V.; Novikov, Y. N.; Gorozhankin,
E. V.; Golosman, E. Z. (Novomoskovskij Gni I Pi Azotno SU, State
Scientific Research and Planning Institute of the Nitrogen Industry
and of Organic Synthesis USSR.). USSR Patent SU 1806005, 1993.
(39) Ko¨hler, K.; Heidenreich, R. G.; Krauter, J. G. E.; Pietsch, J. Chem.-
Eur. J. 2002, 8, 622–631.
´
´
(23) (a) Mastalir, A.; Kira´ly, Z.; Patzko´, A.; De´ka´ny, I.; L’Argentiere, P.
(40) Sakurai, H.; Tsukuda, T.; Hirao, T. J. Org. Chem. 2002, 67, 2721–
2722.
´
Carbon 2008, 46, 1631–1637. (b) Mastalir, A.; Kira´ly, Z.; Benko,
M.; De´ka´ny, I. Catal. Lett. 2008, 124, 34–38.
(24) Kyotani, T.; Suzuki, K.; Yamashita, H.; Tomita, A. Tanso 1993, 160,
255–265.
(41) (a) Bigi, F.; Coluccia, S.; Maggi, S.; Martra, G.; Mazzacani, A.; Sartori,
G. Res. Chem. Intermed. 2003, 39, 285–291. (b) Bedford, R. B.; Singh,
U. G.; Walton, R. I.; Williams, R. T.; Davis, S. A. Chem. Mater. 2005,
17, 701–707. (c) Jana, S.; Dutta, B.; Bera, R.; Koner, S. Inorg. Chem.
2008, 47, 5512–5520. (d) Erathodiyil, N.; Ooi, S.; Seayad, A. M.;
Han, Y.; Lee, S. S.; Ying, J. Y. Chem.-Eur. J. 2008, 14, 3118–3125.
(25) Kovtyukhova, N. I.; Karpenko, G. A.; Chuiko, A. A. Russ. J. Inorg.
Chem. 1992, 37, 566–569.
(26) Kovtyukhova, N. I. Theor. Exp. Chem. 1995, 31, 77–91.
9
J. AM. CHEM. SOC. VOL. 131, NO. 23, 2009 8263