4. Conclusion
A novel ionic liquid was synthesized and its catalytic activity was investigated for the synthesis of 4,4′-(arylmethylene)bis(1H-
pyrazol-5-ol)s under solvent-free conditions. The current protocol has the advantages of simple experimental procedures, good to high
yield of products, inexpensive substrates, reusability of the catalyst and being environmentally benign. The catalyst can be recycled up
to five times without any significant loss of activity.
Acknowledgment
The authors are thankful to the partial support from University Malaya to Project GC 001A-14-AET.
References
[1] (a) P. Wasserschied, T. Welton, (eds.), Ionic Liquids in Synthesis, VCH Wiley, Weinheim, 2002, ISBN 3-527-30515-7;
(b) P. Wassercheid, W. Keim, Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed. 39 (2000) 3772-3789;
(c) J. Dupont, R.F. de Souza, P.A.Z. Suarez, Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev. 102 (2002) 3667-3692;
(d) J.D. Holbrey, K.R. Seddon, Clean Products and Processes, Ionic liquids 1 (1999) 223-236;
(e) S. Keskin, D. Kayrak-Talay, U. Akman, Ö. Hortaçsu, A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluids 43 (2007)
150-180;
(f) M.A.P. Martins, C.P. Frizzo, A.Z. Tier, et al., Ionic liquids in heterocyclic synthesis, Chem. Rev. 114 (2014) 1-70.
[2] A.B. Pereiro, J.M.M. Araújo, S. Martinho, et al., Fluorinated ionic liquids: properties and applications, ACS Sustainable Chem. Eng. 1 (2013) 427-439.
[3] I.M. Saaid, S.Q.A. Mahat, B. Lal, et al., Experimental investigation on the effectiveness of 1-butyl-3-methylimidazolium perchlorate ionic liquid as a
reducing agent for heavy oil upgrading, Ind. Eng. Chem. Res. 53 (2014) 8279-8284.
[4] (a) R. Hagiwara, Y. Ito, Room temperature ionic liquids of alkylimidazolium cations and fluoroanions, J. Fluorine Chem. 105 (2000) 221-227;
(b) R.P. Swatloski, J.D. Holbrey, R.D. Rogers, Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate, Green
Chem. 5 (2003) 361-363.
[5] (a) G. Mariappan, B.P. Saha, L. Sutharson, et al., Anti-inflammatory, antipyretic and toxicological evaluation of some newer 3-methyl pyrazolone
derivatives, Saudi Pharma J, 19 (2011) 115-122;
(b) V.C. Filho, R. Correa, Z. Vaz, et al., Further studies on analgesic activity of cyclic imides, II Farmaco 53 (1998) 55-57;
(c) M. Gokce, S. Utku, E. Kupeli, Synthesis and analgesic and anti-inflammatory activities 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(p-
substituted/nonsubstituted benzal)hydrazone derivatives, Eur. J. Med . Chem. 44 (2009) 3760-3764;
(d) M.M.F. Ismail, Y.A. Ammar, H.S.A. EI-Zahaby, S.I. Eisa, S.E. Barakat, Synthesis of novel 1-pyrazolylpyridin-2-ones as potential anti-inflammatory and
analgesic agents, Arch. Pharm. Life Sci. 340 (2007) 476-482;
(e) N. Uramaru, H. Shigematsu, A. Toda, et al., Design, synthesis, and pharmacological activity of nonallergenic pyrazolone-type antipyretic analgesics, J.
Med. Chem. 53 (2010) 8727-8733.
[6] M.F. Brana, A. Gradillas, A.G. Ovalles, et al., Synthesis and biological activity of
derivatives, Bioorg. Med. Chem. 14 (2006) 9-16.
N,N-dialkylaminoalkyl-substituted bisindolyl and diphenyl pyrazolone
[7] K. Sujatha, G. Shanthi, N.P. Selvam, et al., Synthesis and antiviral activity of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) against peste des petits ruminant
virus (PPRV), Bioorg. Med. Chem. Lett. 19 (2009) 4501-4503.
[8] K.R. Kim, K. Ju-Lee, K. Ji-Sun, et al., EK-6136 (3-mathyl-4-(omethyl-oximino)-1-phenylpyrazolin-activity, Eur. J. Pharmacol. 528 (2005) 37-42.
[9] N. Das, A. Verma, P.K. Shrivastava, S.K. Shrivastava, Synthesis and biological evaluation of some new aryl pyrazol-3-one derivatives as potential
hypoglycemic agents, Indian J. Chem. 47B (2008) 1555-1558.
[10] (a) P. Manojkumar, T.K. Ravi, S. Gopalakrishnan, Antioxidant and antibacterial studies of arylazopyrazoles and arylhydrazonopyrazolones containing
coumarin moiety, Eur. J. Med. Chem. 44 (2009) 4690-4694;
(b) K. Kumar Siva, A. Rajasekharan, Synthesis and Characterisation, in vitro antioxidants activity of Nmannich base of pyrazolone derivatives, Int. J. Res.
Pharma. Chem. 2 (2012) 327-337;
(c) N. Parmer, T. Shashikant, P. Rikin, H. Barad, V. Thakkar, Synthesis, antimicrobial and antioxidant activities of some 5-pyrazolone based Schiff bases,
J. Saudi Chem. Soc. 19 (2015) 36-41.
[11] D. Castagnolo, A. De Logu, M. Radi, et al., Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium
tuberculosis, Bioorg. Med. Chem., 16 (2008) 8587-8591.
[12] R.V. Ragavan, V. Vijayakumar, N.S. Kumari, Synthesis of some novel bioactive 4-oxy/thio substituted-1
condensation, Eur. J. Med. Chem. 44 (2009) 3852-3857.
H-pyrazol-5(4
H)-ones via efficient cross-Claisen
[13] Y. Liu, G. He, C. Kai, Y. Li, H. Zhu, Synthesis, crystal structure, and fungicidal activity of novel 1,5-diaryl-1
oxyacetic acid or oxy(2-thioxothiazolidin-3-yl)ethanone moieties, J. Heterocycl. Chem. 19 (2012) 1370-1375.
[14] M. Londershausen, Review: Approaches to New Parasiticides, Pestic. Sci. 48 (1996) 269-292.
H-pyrazol-3-oxy derivatives containing
[15] C. Pettinari, F. Marchetti, R. Pettinari, et al., Synthesis, structure and luminescence properties of new rare earth metal complexes with 1-phenyl-3-methyl-4-
acylpyrazol-5-ones, J. Chem. Soc. Dalton Trans. (2002) 1409-1415.
[16] X.L. Li, Y.M. Wang, B. Tian, T. Matsuura, J.B. Meng, The solid-state michael addition of 3-methyl-1-phenyl-5-pyrazolone, J. Heterocycl. Chem. 35
(1998) 129-134.
[17] (a) A. Kumar, S. Maurya, M.K. Gupta, R.D Shukla, Amphiphile catalysed selective synthesis of 4-amino alkylated-1
aromatization preferred to the Knoevenagel–Michael type reaction in water, RSC Adv. 4 (2014) 57953-57957;
H-pyrazol-5-ol via Mannich
(b) Z. Zhou, Y. Zhang, An efficient and green one-pot three-component synthesis of 4,4
ethylammonium propionate, Green Chem. Lett. Rev. 7 (2014) 18-23.
′-(arylmethylene)bis(1H-pyrazol-5-ol)s catalyzed by 2-hydroxy
[18] (a) N.G. Khaligh, 4-(Succinimido)-1-butane sulfonic acid as a Brönsted acid catalyst for synthesis of pyrano[4,3-b]pyran derivatives under solvent-free
conditions, Chin. Chem. Lett. 26 (2014) 26-30;
(b) N.G. Khaligh, S.B. Abd Hamid, 4-(Succinimido)-1-butane sulfonic acid as a Brönsted acid catalyst for the synthesis of pyrano[4,3-
b]pyran derivatives
using thermal and ultrasonic irradiation, Chin. J. Catal. 36 (2015) 728-733.
[19] (a) N.P.G. Roeges, A guide to the complete interpretation of infrared spectra of organic structures, Wiley, New York, 1994;
(b) A.M. Petrosyan, Vibrational spectra of l-histidine perchlorate and l-histidine tetrafluoroborate, Vib. Spectrosc. 43 (2007) 284-289.
[20] (a) W. Wang, S.X. Wang, X.Y. Qin, J.T. Li, Reaction of aldehydes and pyrazolones in the presence of sodium dodecyl sulfate in aqueous media, Synth.
Commun. 35 (2005) 1263-1270;
Page 6 of 7