Please do not adjust margins
Journal of Materials Chemistry C
Page 12 of 13
ARTICLE
Journal Name
fluorophores. Quantum yields are remarkably high and with 1-
CN the lowest molecular weight ESIPT-based luminophore with
a quantum yield above 85% in the solid-state was discovered
(MW = 216.1; ΦF = 87.3%). Through careful single crystal
analysis, we identified the well-shaped molecular structure and
the eminent organized crystal lattice as the origin of these
outstanding photoluminescence properties. TDDFT calculated
emission spectra gave evidence for emission from the S1 state
of the keto tautomer. This exceptionally straightforward
concept for the creation of minimalistic, highly emissive
fluorophores opens up the opportunity for future design studies
yielding luminophores with superior properties. Applications of
the discussed fluorophores in optoelectronic materials are
underway in our laboratories.
DOI: 10.1039/D0TC00776E
27, 1437;
6
7
8
J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam and B. Z.
Tang, Chem. Rev., 2015, 115, 11718.
J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang,
Adv. Mater., 2014, 26, 5429.
B. Z. Tang, A. Qin, Aggregation-Induced Emission.
Fundamentals, Wiley; John Wiley & Sons Inc, Chichester,
2013.
a) B.-K. An, J. Gierschner and S. Y. Park, Acc. Chem. Res.,
2012, 45, 544; b) D. Oelkrug, A. Tompert, J. Gierschner, H.-
J. Egelhaaf, M. Hanack, M. Hohloch and E. Steinhuber, J.
Phys. Chem. B, 1998, 102, 1902;
9
10 Z. Zhao, J. W. Y. Lam and B. Z. Tang, J. Mater. Chem., 2012,
22, 23726.
11 S. Benson, A. Fernandez, N. D. Barth, F. de Moliner, M. H.
Horrocks, C. S. Herrington, J. L. Abad, A. Delgado, L. Kelly, Z.
Chang, Y. Feng, M. Nishiura, Y. Hori, K. Kikuchi and M.
Vendrell, Angew. Chem. Int. Ed., 2019, 58, 6911.
Conflicts of interest
There are no conflicts to declare.
12 M. Shimizu and T. Hiyama, Chem. Asian. J., 2010, 5, 1516.
Acknowledgements
13 a) A. C. Sedgwick, L. Wu, H.-H. Han, S. D. Bull, X.-P. He, T. D.
James, J. L. Sessler, B. Z. Tang, H. Tian and J. Yoon, Chem.
Soc. Rev., 2018, 47, 8842; b) V. S. Padalkar and S. Seki,
Chem. Soc. Rev., 2016, 45, 169; c) A. P. Demchenko, K.-C.
Tang and P.-T. Chou, Chem. Soc. Rev., 2013, 42, 1379; d) J.
E. Kwon and S. Y. Park, Adv. Mater., 2011, 23, 3615;
14 P. F. Barbara, P. K. Walsh and L. E. Brus, J. Phys. Chem.,
1989, 93, 29.
15 H.-Q. Yin, F. Yin and X.-B. Yin, Chem. Sci., 2019, 10, 11103.
16 a) K. Benelhadj, W. Muzuzu, J. Massue, P. Retailleau, A.
Charaf-Eddin, A. D. Laurent, D. Jacquemin, G. Ulrich and R.
Ziessel, Chem. Eur. J., 2014, 20, 12843; b) H. Shono, T.
Ohkawa, H. Tomoda, T. Mutai and K. Araki, ACS Appl.
We thank Prof. Dr. Nadja-C. Bigall, Dr. Dirk Dorfs, and Pascal
Rusch (all from Leibniz University Hannover) for supporting the
photophysical measurements.
References
1
a) R. Long, C. Tang, J. Xu, T. Li, C. Tong, Y. Guo, S. Shi and D.
Wang, Chem. Commun., 2019, 55, 10912; b) R. T. K. Kwok,
C. W. T. Leung, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev.,
2015, 44, 4228; c) H. Kobayashi, M. Ogawa, R. Alford, P. L.
Choyke and Y. Urano, Chem. Rev., 2010, 110, 2620; d) L. D.
Lavis and R. T. Raines, ACS Chem. Biol., 2008,
3, 142;
2
a) X. Li, X. Gao, W. Shi and H. Ma, Chem. Rev., 2014, 114
,
Mater. Interfaces, 2011, 3, 654; c) K.-C. Tang, M.-J. Chang,
590; b) S. W. Thomas, G. D. Joly and T. M. Swager, Chem.
Rev., 2007, 107, 1339; c) L. Basabe-Desmonts, D. N.
T.-Y. Lin, H.-A. Pan, T.-C. Fang, K.-Y. Chen, W.-Y. Hung, Y.-H.
Hsu and P.-T. Chou, J. Am. Chem. Soc., 2011, 133, 17738; d)
S. Park, J. E. Kwon, S. H. Kim, J. Seo, K. Chung, S.-Y. Park, D.-
J. Jang, B. Milián Medina, J. Gierschner and S. Y. Park, J. Am.
Chem. Soc., 2009, 131, 14043;
Reinhoudt and M. Crego-Calama, Chem. Soc. Rev., 2007, 36
,
993; d) R. Martínez-Máñez and F. Sancenón, Chem. Rev.,
2003, 103, 4419; e) A. P. de Silva, H. Q. N. Gunaratne, T.
Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T.
Rademacher and T. E. Rice, Chem. Rev., 1997, 97, 1515;
a) H. Yersin, Highly Efficient OLEDs with Phosphorescent
Materials, Wiley-VCH, Hoboken, 2008; b) K. Müllen and U.
Scherf, Organic Light-Emitting Devices. Synthesis,
Properties, and Applications, Wiley-VCH, Weinheim, 2006;
c) Admin, R. H. Friend, R. W. Gymer, A. B. Holmes, J. H.
Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D.
Santos, J. L. Brédas, M. Lögdlund and W. R. Salaneck,
Nature, 1999, 397, 121;
17 Y. Zhang, H. Yang, H. Ma, G. Bian, Q. Zang, J. Sun, C. Zhang,
Z. An and W.-Y. Wong, Angew. Chem. Int. Ed., 2019, 58
,
3
8773.
18 a) T. Mutai, H. Shono, Y. Shigemitsu and K. Araki,
CrystEngComm, 2014, 16, 3890; b) T. Mutai, H. Tomoda, T.
Ohkawa, Y. Yabe and K. Araki, Angew. Chem. Int. Ed., 2008,
47, 9522;
19 a) T. Mutai, T. Ohkawa, H. Shono and K. Araki, J. Mater.
Chem. C, 2016, 4, 3599; b) T. Mutai, H. Sawatani, T. Shida,
H. Shono and K. Araki, J. Org. Chem., 2013, 78, 2482;
20 S. Park, J. E. Kwon, S.-Y. Park, O.-H. Kwon, J. K. Kim, S.-J.
Yoon, J. W. Chung, D. R. Whang, S. K. Park, D. K. Lee, D.-J.
4
5
a) M. D. Watson, A. Fechtenkötter and K. Müllen, Chem.
Rev., 2001, 101, 1267; b) R. E. Martin and F. Diederich,
Angew. Chem. Int. Ed., 1999, 38, 1350;
a) O. Ostroverkhova, Chem. Rev., 2016, 116, 13279; b) H.
Meier, Angew. Chem. Int. Ed., 2005, 44, 2482; c) R.
Jang, J. Gierschner and S. Y. Park, Adv. Opt. Mater., 2017, 5,
1700353.
12 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins