Dissolution of ꢀ-CD in Hydrophilic Ionic Liquids
J. Phys. Chem. A, Vol. 114, No. 11, 2010 3931
TABLE 5: Infrared Intensity of the WCdN and WCtN
Vibrational Modes
phases in gas chromatography, the above findings may be useful
for the molecular design of such stationary phases.
intensity
Acknowledgment. This work was supported financially by
the National High Technology Research and Development
Program (863 Program, No. 2007AA05Z454), the National
Natural Science Foundation of China (No. 20873036) and the
Innovation Scientists and Technicians Troop Construction
Projects of Henan Province (No. 084200510015).
vibrational modes
and their ratio
[Bmim][N(CN)
2
]
2
ꢀ-CD + [Bmim][N(CN) ]
a
V
V
V
CdN
15.1
134.4
0.11
11.1
119.9
0.09
b
C ≡ N
CdN/VCtN
a
The peak of VCdN is at around 1570 cm-1. b The peak of VCtN is
at around 2200 cm-1.
References and Notes
(
(
1) Szejtli, J. Chem. ReV. 1998, 98, 1743.
interaction energies in the ILs when such data are not available.
The higher the melting points, the greater the interaction energies
2) Engeldinger, E.; Armspach, D.; Matt, D. Chem. ReV. 2003, 103,
4
147.
of the ILs are. It was found that melting points of ionic liquids
(3) Martin Del Valle, E. M. Proc. Biochem. 2004, 39, 1033.
(4) Sabadini, E.; Cosgrove, T.; Eg ´ı dio, F. D. C. Carbohydr. Res. 2006,
41, 270.
5) Maginn, E. J. Acc. Chem. Res. 2007, 40, 1200.
6) Greaves, T. L.; Drummond, C. J. Chem. ReV. 2008, 108, 206.
(7) Hardacre, C.; Holbrey, J. D.; Nieuwenhuyzen, M.; Youngs, T. G. A.
Acc. Chem. Res. 2007, 40, 1146.
8) Castner, E. W.; Wishart, J. F.; Shirota, H. Acc. Chem. Res. 2007,
0, 1217.
increase in the order2
(
6,35,36
[Amim]Cl (∼290 K) < [Hemim]Cl
3
∼333 K) < [Bmim]Cl (∼343 K). The reverse order would be
(
(
approximated for the interaction energies. This information
makes it possible to interpret the increased solubilities of ꢀ-CD
in the ILs from [Bmim]Cl, [Hemim]Cl to [Amim]Cl, and from
(
2 2 2
[Bmim][N(CN) ], [Hemim][N(CN) ] to [Amim][N(CN) ] men-
4
tioned as one of the interesting features observed from the
solubility data in Table 1.
Similar to eq 11, the standard solution entropy can be
expressed by
(9) Han, X. X.; Armstrong, D. W. Acc. Chem. Res. 2007, 40, 1079.
(
(
(
10) Hapiot, P.; Lagrost, C. Chem. ReV. 2008, 108, 2238.
11) P aˆ rvulescu, V. I.; Hardacre, C. Chem. ReV. 2007, 107, 2615.
12) El Seoud, O. A.; Koschella, A.; Fidale, L. C.; Dorn, S.; Heinze, T.
Biomacromolecules 2007, 8, 2629.
(
(
13) Murugesan, S.; Linhardt, R. J. Curr. Org. Synth. 2005, 2, 437.
14) Zhu, S. D.; Wu, Y. X.; Chen, Q. M.; Yu, Z. N.; Wang, C. W.; Jin,
θ
θ
C-A
θ
C-D
∆
S ) ∆S
+ ∆S
(12)
S. W.; Ding, Y. G.; Wu, G. Green Chem. 2006, 8, 325.
15) Liu, Q. B.; Janssen, M. H. A.; Rantwijk, F. V.; Sheldon, R. A.
Green Chem. 2005, 7, 39.
16) Gao, Y. A.; Li, Z. H.; Du, J. M.; Han, B. X.; Li, G. Z.; Hou, W. G.;
Shen, D.; Zheng, L. Q.; Zhang, G. Y. Chem.sEur. J. 2005, 11, 5875.
17) Gao, Y. A.; Zhao, X. Y.; Dong, B.; Zheng, L. Q.; Li, N.; Zhang,
S. H. J. Phys. Chem. B 2006, 110, 8576.
(18) Li, N.; Liu, J.; Zhao, X. Y.; Gao, Y. A.; Zheng, L. Q.; Zhang, J.;
Yu, L. Colloids Surf. A 2007, 292, 196.
S
(
where ∆S θC -A and ∆S Cθ -CD represent the entropy change for the
disruption of the ordered structures of ILs (positive) and for
(
(
the formation of the inclusion complexes (negative), respec-
θ
tively. Therefore, the positive ∆S
S
values observed experimen-
tally imply that structure change of the ILs is greater than that
caused by formation of the inclusion complexes.
(
(
19) He, Y. F.; Shen, X. H. J. Photochem. Photobiol. A 2008, 197, 253.
20) He, Y. F.; Chen, Q. D.; Xu, C.; Zhang, J. J.; Shen, X. H. J. Phys.
Chem. B 2009, 113, 231.
4
. Conclusions
(21) Amajjahe, S.; Ritter, H. Macromolecules 2008, 41, 716.
(
22) Berthod, A.; He, L.; Armstrong, D. W. Chromatographia 2001,
In this work, the solubilities, standard solution Gibbs energies,
53, 63.
(
23) Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.;
solution enthalpies, and solution entropies have been determined
for ꢀ-CD in six kinds of hydrophilic ionic liquids. It is shown
that the solubilities of ꢀ-CD were remarkable in these ionic
Broker, G. A.; Rogers, R. D. Green Chem. 2001, 3, 156.
(
24) Zhang, H.; Wu, J.; Zhang, J.; He, J. S. Macromolecules 2005, 38,
8272.
(
25) Laus, G.; Bentivoglio, G.; Schottenberger, H.; Kahlenberg, V.;
liquids and followed the order [Amim][N(CN)
Hemim][N(CN) ] > [Amim]Cl > [Bmim][N(CN) ] > [Hemim]Cl
[Bmim]Cl, and the dissolution process was unfavorable
2
]
>
Kopacka, H.; R o¨ der, T.; Sixta, H. Lenzinger Ber. 2005, 84, 71.
[
2
2
(
26) Branco, L. C.; Rosa, J. N.; Ramos, J. J. M.; Afonso, C. A. M.
>
Chem.sEur. J. 2002, 8, 3671.
(27) Fukaya, Y.; Sugimoto, A.; Ohno, H. Biomacromolecules 2006, 7,
1
thermodynamically and controlled by enthalpic term. H NMR
and IR spectra measurements indicated that 1:1 inclusion
complexes were formed between ꢀ-cyclodextrin and imidazo-
lium cations of the ionic liquids. However, the disruption of
the attractive interactions and the ordered structures of the ILs
predominates the dissolution process. This is quite different from
the dissolution of ꢀ-CD in aqueous IL solutions, in which the
process was driven by the inclusion of cations of the ILs into
the cavity of ꢀ-CD. In addition, the effect of the ILs structure
on the solubilities of ꢀ-CD was examined. The result indicated
that, for the same cation, the solubilities of ꢀ-CD were much
higher in the dicyanamide-based ILs than in the chloride-based
ILs because of the weaker interactions in the former systems.
Therefore, in order to design effective ILs for the dissolution
of ꢀ-CD, interactions in ionic liquids need to be studied
extensively. Considering the fact that cyclodextrins and their
derivatives dissolved in ILs can be used to prepare the stationary
3
295.
(
28) Queimada, A. J.; Mota, F. L.; Pinho, S. P.; Macedo, E. A. J. Phys.
Chem. B 2009, 113, 3469.
(29) Bellamy, L. J. The Infrared Spectra of Complex Molecules; Wiley:
New York, 1958.
(30) Krossing, I.; Slattery, J. M.; Daguenet, C.; Dyson, P. J.; Oleinikova,
A.; Weing a¨ rtner, H. J. Am. Chem. Soc. 2006, 128, 13427.
(31) Berthod, A.; Kozak, J. J.; Anderson, J. L.; Ding, J.; Armstrong,
D. W. Theor. Chem. Acc. 2007, 117, 127.
(
32) Turner, E. A.; Pye, C. C.; Singer, R. D. J. Phys. Chem. A 2003,
07, 2277.
33) Emel’yanenko, V. N.; Verevkin, S. P.; Heintz, A. J. Am. Chem.
Soc. 2007, 129, 3930.
34) Guo, M. Master Dissertation. Henan Normal University, China,
009.
35) Zhao, H.; Baker, G. A.; Song, Z. Y.; Olubajo, O.; Crittle, T.; Peters,
D. Green Chem. 2008, 10, 696.
36) Yeon, S. H.; Kim, K. S.; Choi, S.; Lee, H.; Kim, H. S.; Kim, H.
1
(
(
2
(
(
Electrochim. Acta 2005, 50, 5399.
JP907333V