Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C7CC04842D
COMMUNICATION
Journal Name
B. Hawes, T. Kowalski, Bioorg. Med. Chem. Lett. 2011, 21,
3290-3296.
could coordinate with rhodium simultaneously and
consequently impede the common defluoronation.12 With the
assistance of the sulfonate group proton would approach the
Rh-C bond and then protonation occurs to afford the
hydroarylation product along with the regeneration of Rh(III)
catalyst.
5
Selected examples of difluoroalkylation via cross-coupling:
(a) G. Li, T. Wang, F. Fei, Y. Su, Y. Li, Q. Lan, X. Wang, Angew.
Chem. Int. Ed. 2016, 55, 3491-3495. (b) M. V. Ivanova, A.
Bayle, T. Besset, T. Poisson, X. Pannecoucke, Angew. Chem.
Int. Ed. 2015, 54, 13406-13410. (c) W.-H. Guo, Z.-J. Luo, W.
Zeng, X. Zhang, ACS Catal. 2017, 7, 896-901. (d) X. Nie, C.
Cheng, G. Zhu, Angew. Chem. Int. Ed. 2017, 56, 1898-1902.
Selected examples for deoxofluoronation of ketone: (a) L. N.
Markovsi, V. E. Pahinnik, A. V. Kirsanov, Synthesis 1973, 787-
789. (b) G. S. Lal, G. P. Pez, R. J. Pesaresi, F. M. Prozonic, H.
Cheng, J. Org. Chem. 1999, 64, 7048-7054. (c) Y. Chang, A.
Tewari, A.-I. Adi, C. Bae, Tetrahedron 2008, 64, 9837-9842.
Selected examples for visible-light induced radical difluoro-
alkylation: (a) Q. Lin, L. Chu, F.-L. Qing, Chin. J. Chem. 2013
31, 885-891. (b) Y.-M. Su, Y. Hou, F. Yin, Y.-M. Xu, Y. Li, X.
Zheng, X.-S. Wang, Org. Lett. 2014, 16, 2958-2961. (c) J. Jung,
E. Kim, Y. You, E. J. Cho, Adv. Synth. Catal. 2014, 356, 2741-
2748.
For the hydroarylation of alkenes via C-H activation: (a) L.
Yang, H. Huang, Chem. Rev. 2015, 115, 3468-3517. (b) Z.
Zhang, M. Tang, S. Han, L. Ackermann, J. Li, J. Org. Chem.
2017, 82, 664-672. (c) P. Keshri, K. R. Bettadapur, V. Lanke, K.
R. Prabhu, J. Org. Chem. 2016, 81, 6056-6065.
(a) P. Tian, C. Feng, T.-P. Loh, Nature Commun. 2015, 6,
7472-7478. (b) H. Liu, S. S, C.-Q. Wang, C. Feng, T.-P. Loh,
ChemSusChem 2017, 10, 58-61. (c) J.-Q. Wu, S.-S. Zhang, H.
Gao, Z. Qi, C.-J. Zhou, W.-W. Ji, Y. Liu, Y. Chen, Q. Li, X. Li, H.
Wang, J. Am. Chem. Soc. 2017, 139, 3537-3545.
6
7
Conclusions
In summary, we documented a new protocol that represents
an ideal mode for difluoroalkylation through a C-H bond
activation and addition to 2,2-difluorovinyl arenesulfonate.
This unprecedented hydroarylation event features operational
simplicity, mild reaction conditions and remarkable atom
economy. By virtue of the chelation of sulfonate the otherwise
favoured β-defluoronation is diverted completely to
protonative demetalation. The further application of this
method to construct complex molecules is ongoing in our
laboratory.
,
8
9
We thank the “1000-Youth Talents Plan”, a Start-up Grant
(39837110) from Nanjing Tech University and financial support
by SICAM Fellowship by Jiangsu National Synergetic Innovation
Center for Advanced Materials.
10 (a) J. Ichikawa, M. Yokota, T. Kudo, S. Umezaki, Angew.
Chem. Int. Ed. 2008, 47, 4870-4873. (b) B. Gao, Y. Zhao, J. Hu,
Angew. Chem. Int. Ed. 2015, 54, 638-642. (c) P. Tian, C.-Q.
Wang, S.-H. Cai, S. Song, L. Ye, C. Feng, T.-P. Loh, J. Am.
Chem. Soc. 2016, 138, 15869-15872.
11 (a) Ye, B.; Cramer, N. Science, 2012, 338, 504-506. (b) H.
Wang, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 7318-7322.
(c) D. Zhao, Z. Shi, F. Glorius, Angew. Chem. Int. Ed. 2013, 52,
12426-12429. (d) H. Zhang, K. Wang, B. Wang, H. Yi, F. Hu, C.
Li, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2014, 53, 13234-
13238. (e) S. Yu, S. Liu, Y. Lan, B. Wan, X. Li, J. Am. Chem. Soc.
2015, 137, 1623-1631.
Notes and references
1
Selected reviews: (a) S. Purser, P. R. Moore, S. Swallow, V.
Gouverneur, Chem. Soc. Rev. 2008, 37, 320-330. (b) E. P.
Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell,
J. Med. Chem. 2015, 58, 8315-8359. (c) F. Babudri, G. M.
Farinola, F. Naso, R. Ragni, Chem. Commun. 2007, 43, 1003-
1022. (d) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L.
Aceña, V. A. Soloshonok, K. Izawa, H. Liu, Chem. Rev. 2016
116, 422-518.
,
2
3
Selected reviews: (a) C. Hollingworth, V. Gouverneur, Chem.
Commun. 2012, 48, 2929-2942. (b) J.-W. Lee, M. T. Oliveira,
H. B. Jang, S. Lee, D. Y. Chi, D. W. Kim, C. E. Song, Chem. Soc.
Rev. 2016, 45, 4638-4650.
Selected reviews: (a) O. A. Tomashenko, V. V. Grushin, Chem.
Rev. 2011, 111, 4475-4521. (b) C. Alonso, E. M. de Marigorta,
G. Rubiales, F. Palacios, Chem. Rev. 2015, 115, 1847-1935. (c)
A. Studer, Angew. Chem. Int. Ed. 2012, 51, 8950-8958. (d) X.
Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev. 2015, 115,
826-870. (e) T. Liang, C. N. Neumann, T. Ritter, Angew. Chem.
Int. Ed. 2013, 52, 8214-8264.
12 (a) J. Ichikawa, R. Nadano, N. Ito, Chem. Commun. 2006, 42,
4425-4427. (b) M. Hu, Z. He, B. Gao, L. Li, C. Ni, J. Hu, J. Am.
Chem. Soc. 2013, 135, 17302-17305. (c) T. Ichitsuka, T. Fujita,
J. Ichikawa, ACS Catal. 2015, 5, 5947-5950. (d) Z. Zhang, Q.
Zhou, W. Yu, T. Li, G Wu, Y. Zhang, J. Wang, Org. Lett. 2015
17, 2474-2477. (e) Y. Huang, T. Hayashi, J. Am. Chem. Soc.
2016, 138, 12340-12343. (f) Y. Liu, Y. Zhou, Y. Zhao, J. Qu,
Org. Lett. 2017, 19, 946-949.
,
13 (a) X. Li, S. Yu, F. Wang, B. Wan, X. Yu, Angew. Chem. Int. Ed.
2013, 52, 2577-2580. (b) K. Nobushige, K. Hirano, T. Satoh,
M. Miura, Tetrahedron 2015, 71, 6506-6512.
14 (a) T. M. Gøgsig, L. S. Søbjerg, A. T. Lindhardt, K. L. Jensen, T.
Skrydstrup, J. Org. Chem. 2008, 73, 3404-3410. (b) B. Zhang,
X. Zhang, Chem. Commun. 2016, 52, 1238-1241. (c) I.
McAlpine, M Tran-Dubé, F. Wang, S. Scales, J. Matthews, M.
R. Collins, S. K. Nair, M. Nguyen, J. Bian, L. M. Alsina, J. Sun, J.
Zhong, J. S. Warmus, B. T. O’Neill, J. Org. Chem. 2015, 80,
7266-7274.
15 P. Lu, C. Feng, T.-P. Loh, Org. Lett. 2015, 17, 3210-3213.
16 (a) L. Liang, S. Fu, D. Lin, X.-Q. Zhang, Y. Deng, H. Jiang, W.
Zeng, J. Org. Chem. 2014, 79, 9472-9480. (b) X. Qin, H. Liu, D.
Qin, Q. Wu, J. You, D. Zhao, Q. Guo, X. Huang, J. Lan, Chem.
Sci. 2013, 4, 1964-1969. (c) J.-Q. Wu, Z. Yang, S.-S. Zhang, C.-
Y. Jiang, Q. Li, Z.-S. Huang, H. Wang, ACS Catal. 2015, 5,
6453-6457.
4
(a) J. M. Coteron, M. Marco, J. Esquivias, X. Deng, K. L. White,
J. White, M. Koltun, F. E. Mazouni, S. Kokkonda, K. Katneni,
R. Bhamidipati, D. M. Shackleford, I. Angulo-Barturen, S. B.
Ferrer, M. B. Jiménez-Díaz, F.-J. Gamo, E. J. Goldsmith, W. N.
Charman, N. Bathurst, D. Floyd, D. Matthews, J. N. Burrows,
P. K. Rathod, S. A. Charman, M. A. Phillips, J. Med. Chem.
2012, 54, 5540-5561. (b) E. J. Miller, S. G. Mays, M. T. Baillie,
R. B. Howard, D. G. Culver, M. Saindane, S. T. Pruett, J. J.
Holt, D. S. Menaldino, T. J. Evers, G. P. Reddy, R. F. Arrendale,
M. G. Natchus, J. A. Petros, D. C. Liotta, ACS Med. Chem. Lett.
2016, 7, 537-542. (c) S. Gnaim, A. Scomparin, X. Li, P. S.
Baran, C. Rader, R. Satchi-Fainaro, D. Shabat, Bioconjugate
Chem. 2016, 27, 1965-1971. (d) F. Xue, H. Li, S. L. Delker, J.
Fang, P. Martásek, L. J. Roman, T. L. Poulos, R. B. Silverman,
J. Am. Chem. Soc. 2010, 132, 14229-14238. (e) Y. Xia, S.
Chackalamannil, W. J. Greenlee, C. Jayne, B. Neustadt, A.
Stamford, H. Vaccaro, X. Xu, H. Baker, K. O’Neill, M. Woods,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins