Macromolecules
Article
of quaternary carbons may result in MPI-1 the favorable
adsorption for the aliphatic CH4 gas. As a result, the CO2/CH4
selectivity of MPI-1 is the lowest among the three polymers.
It is noteworthy that, in fact, the components of flue gas,
natural gas and landfill gas are rather complex. In the case of
flue gas, the influence of water on the CO2/N2 selectivity
should also be considered. For a typical flue gas of post-
combustion from coal-fired plants, there are about 15−16%
CO2 and 5−7% water vapor.1 In other word, the partial
pressure of CO2 in the flue gas is about 0.15 bar, whereas that
of water vapor is 0.05 bar. Therefore, from the adsorption
curves of CO2 and water vapor at 298 K (Figure 4 and Figure
5), the ratios of adsorption capacity of CO2 at 0.15 bar to that
of water vapor at 0.05 bar can be calculated. The data in Table
2 show that, for flue gas, the three samples are more
preferentially adsorbed by CO2 rather than water vapor. For
example, the CO2/H2O ratios for MPI-1, MPI-2, and MPI-3 are
10.5, 5.5, and 10.9, respectively. Even so, the competition of
adsorption between water vapor and CO2 can not be ignored.
Especially for a humidified flue gas or at the high feed pressure,
the actual values of CO2/N2 sorption selectivity may be lower
than those listed in Table 2 to some extent.
as the data of elemental analysis and virial parameters of the
polyimide networks. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Science Foundation of China (Nos.
51073030 and 51273031) and the Program for New Century
Excellent Talents in University of China (No. NCET-06-0280)
for financial support of this research.
REFERENCES
■
(1) D’Alessandro, D.; Smit, B.; Long, J. Angew. Chem., Int. Ed. 2010,
49, 6058−6082.
(2) Bae, Y. S.; Snurr, R. Q. Angew. Chem., Int. Ed. 2011, 50, 11586−
11596.
(3) Buchard, A.; Jutz, A. F.; Kember, M. R.; White, A. J. P.; Rzepa, H.
S.; Williams, C. K. Macromolecules 2012, 45, 6781−6795.
(4) Lee, E. H.; Ahn, J. Y.; Dharman, M. M.; Park, D. W.; Kim, I. L.
Catal. Today 2008, 131, 130−134.
(5) Zhao, Y.; Zhang, J. J. Nat. Gas Chem. 2007, 16, 389−392.
(6) Cheng, Q.; Zhong, S. Chin. J. Catal. 2003, 24, 558−562.
(7) (a) Rochelle, G. T. Science 2009, 325, 1652−1654.
(b) MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.;
Jackson, G.; Adjiman, C. S.; Williams, C. K.; Shah, N.; Fennell, P.
Energy Environ. Sci. 2010, 3, 1645−1669.
(8) (a) Zheng, B. S.; Bai, J. F.; Duan, J. G.; Wojtas, L.; Zaworotko, M.
J. J. Am. Chem. Soc. 2011, 133, 748−751. (b) Banerjee, R.; Furukawa,
H.; Britt, D.; Knobler, C.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc.
2009, 131, 3875−3877. (c) Yang, S. T.; Kim, J. Y.; Kim, J.; Ahn, W. S.
Fuel 2012, 97, 435−442. (d) McEwen, J.; Hayman, J. D.; Yazaydin, A.
O. Chem. Phys. 2013, 412, 72−76. (e) Pham, T. D.; Liu, Q. L.; Lobo,
R. F. Langmuir 2013, 29, 832−839.
(9) (a) Vaidhyanathan, R.; Iremonger, S. S.; Dawson, K. W.; Shimizu,
G. K. H. Chem. Commun. 2009, 5230−5232. (b) Couck, S.; Denayer, J.
́
F. M.; Baron, G. V.; Remy, T.; Gascon, J.; Kapteijn, F. J. Am. Chem.
Soc. 2009, 131, 6326−6327. (c) An, J. H.; Geib, S. J.; Rosi, N. L. J. Am.
Chem. Soc. 2010, 132, 38−39. (d) Si, X. L.; Jiao, C. L.; Li, F.; Zhang, J.;
Wang, S.; Liu, S.; Li, Z. B.; Sun, L. X.; Xu, F.; Gabelica, Z.; Schick, C.
Energy Environ. Sci. 2011, 4, 4522−4527.
CONCLUSIONS
■
Three microporous polyimide networks MPI-1, MPI-2, and
MPI-3 with BET surface areas in the range of 586−1454 m2 g−1
have been successfully synthesized through polycondensation
of pyromellitic dianhydride with tetra(4-aminophenyl)methane,
1,3,5-tris(4-aminophenyl)benzene), and tris(4-aminophenyl)-
amine, respectively. Their chemical structures were confirmed
by FTIR, solid-state 13C CP/MAS NMR spectra, and elemental
analyses. The analyses of N2 sorption isotherms reveal that
three polymers have quite narrow pore size distribution with
pores centered at ca. 5.5 Å, agreeing with the observations of
high-resolution TEM images. The small and uniform pore sizes
were resulted from the homogeneous and random inter-
penetration of network by means of elaborate control of the
polymerization conditions, which process was explained with
the assistance of computer modeling method. The presence of a
large amount of heteroatoms results in the strong affinity of
polyimide skeletons toward CO2 molecule. Consequently, all
the three polymers have high isosteric heat of adsorption above
30.0 kJ mol−1. At 1.0 bar and 273 K, the high CO2 uptake
capacities as high as 16.8 wt % have been achieved. The
selectivities for CO2/N2 and CO2/CH4 are up to 102, and 12,
respectively, superior to many other microporous organic
polymers. Furthermore, the polymers display excellent abilities
to adsorb organic pollutants like benzene vapor. For MPI-1, the
uptake for benzene vapor at room temperature reach 119.8 wt
%, and the benzene/N2 and benzene/H2O selectivities are 342
and 28, respectively, which exceed most silica, inorganic−
organic hybrid, and carbon materials. The above results indicate
that the resulted polyimides are promising candidates as
adsorbents for CO2 capture as well as air- and water-cleaning in
the environmental protection field.
(10) (a) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009,
38, 1477−1504. (b) Panda, T.; Pachfule, P.; Chen, Y.; Jiang, J.;
Banerjee, R. Chem. Commun. 2011, 47, 2011−2013. (c) Weber, J.; Du,
N. Y.; Guiver, M. D. Macromolecules 2011, 44, 1763−1767. (d) Arstad,
B.; Fjellvag, H.; Kongshaug, K. O.; Swang, O.; Blom, R. Adsorption
2008, 14, 755−762.
(11) (a) Yuan, D. Q.; Lu, W. G.; Zhao, D.; Zhou, H. C. Adv. Mater.
2011, 23, 3723−3725. (b) Furukawa, H.; Yaghi, O. M. J. Am. Chem.
Soc. 2009, 131, 8875−8883.
(12) Dawson, R.; Stockel, E.; Holst, J. R.; Adams, D. J.; Cooper, A. I.
̈
Energy Environ. Sci. 2011, 4, 4239−4245.
(13) (a) Lu, W. G.; Yuan, D. Q.; Sculley, J.; Zhao, D.; Krishna, R.;
Zhou, H. C. J. Am. Chem. Soc. 2011, 133, 18126−18129. (b) Lu, W.
G.; J. Sculley, P.; Yuan, D.; Krishna, Q. R.; Wei, Z. G..; Zhou, H. C.
Angew. Chem., Int. Ed. 2012, 51, 7480−7484.
ASSOCIATED CONTENT
* Supporting Information
■
(14) (a) Katsoulidis, A. P.; Kanatzidis, M. G. Chem. Mater. 2011, 23,
1818−1824. (b) Katsoulidis, A. P.; Kanatzidis, M. G. Chem. Mater.
2012, 24, 471−479.
(15) (a) Rabbani, M. G.; El-Kaderi, H. M. Chem. Mater. 2012, 24,
1511−1517. (b) Rabbani, M. G.; Reich, T. E.; Kassab, R. M.; Jackson,
K. T.; El-Kaderi, H. M. Chem. Commun. 2012, 48, 1141−1143.
(c) Zhao, Y. C.; Cheng, Q. Y.; Zhou, D.; Wang, T.; Han, B. H. J.
S
This section contains nine figures and two tables, including the
FTIR and solid-state 13C CP/MAS NMR spectra, X-ray
diffraction patterns, TGA curves, enlarged TEM images,
adsorption selectivities of CO2 over CH4 and N2, and
adsorption selectivities of benzene over H2O and N2 as well
3065
dx.doi.org/10.1021/ma400496q | Macromolecules 2013, 46, 3058−3066