Inorganic Chemistry
Article
Li, D.-S.; Sun, C.; Feng, P.; Bu, X. Stable Bimetal-Organic
Hierarchical Nanostructures as High-Performance Electrocatalysts
for Oxygen Evolution Reaction. Angew. Chem., Int. Ed. 2019, 58,
AUTHOR INFORMATION
ORCID
■
*
4
(
227−4231.
4) (a) Zhang, T.; Lin, W. Metal-Organic Frameworks for Artificial
Photosynthesis and Photocatalysis. Chem. Soc. Rev. 2014, 43, 5982−
993. (b) Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X.-Y.; Lou, X. W. Porous
*
5
Molybdenum Carbide Nano-Octahedrons Synthesized via Confined
Carburization in Metal-Organic Frameworks for Efficient Hydrogen
Production. Nat. Commun. 2015, 6, 6512. (c) Zeng, L.; Guo, X.; He,
C.; Duan, C. Metal-Organic Frameworks: Versatile Materials for
Heterogeneous Photocatalysis. ACS Catal. 2016, 6, 7935−7947.
Notes
The authors declare no competing financial interest.
(
5) (a) Jiao, L.; Wang, Y.; Jiang, H.-L.; Xu, Q. Metal-Organic
Frameworks as Platforms for Catalytic Applications. Adv. Mater. 2018,
0, 1703663. (b) Wang, W.; Xu, X.; Zhou, W.; Shao, Z. Recent
ACKNOWLEDGMENTS
We are grateful for financial support from the National Natural
Science Foundation of China (Grants 21571158 and
1701147), the Key Research Project of University of Henan
Province (Grant 19zx004), and the Startup Fund for PhDs of
Natural Scientific Research of Zhengzhou University of Light
Industry (Grant 2016BSJJ026).
■
3
Progress in Metal-Organic Frameworks for Applications in Electro-
catalytic and Photocatalytic Water Splitting. Adv. Sci. 2017, 4,
2
1
600371. (c) An, Y.; Liu, Y.; An, P.; Dong, J.; Xu, B.; Dai, Y.; Qin, X.;
II
Zhang, X.; Whangbo, M.-H.; Huang, B. Ni Coordination to Al-Based
Metal-Organic Framework Made from 2-Aminoterephthalate for
Photocatalytic Overall Water Splitting. Angew. Chem., Int. Ed. 2017,
5
6, 3036−3040. (d) Qin, J.-S.; Du, D.-Y.; Guan, W.; Bo, X.-J.; Li, Y.-
REFERENCES
F.; Guo, L.-P.; Su, Z.-M.; Wang, Y.-Y.; Lan, Y.-Q.; Zhou, H.-C.
Ultrastable Polymolybdate-Based Metal-Organic Frameworks as
Highly Active Electrocatalysts for Hydrogen Generation from
Water. J. Am. Chem. Soc. 2015, 137, 7169−7177.
■
(
1) (a) Zhang, W.; Lai, W.; Cao, R. Energy-Related Small Molecule
Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen
Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based
Systems. Chem. Rev. 2017, 117, 3717−3797. (b) Liu, J.; Liu, Y.; Liu,
N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.;
Kang, Z. Metal-Free Efficient Photocatalyst for Stable Visible Water
Splitting via a Two-Electron Pathway. Science 2015, 347, 970−974.
c) Tang, Y.-J.; Gao, M.-R.; Liu, C.-H.; Li, S.-L.; Jiang, H.-L.; Lan, Y.-
Q.; Han, M.; Yu, S.-H. Porous Molybdenum-Based Hybrid Catalysts
for Highly Efficient Hydrogen Evolution. Angew. Chem., Int. Ed. 2015,
4, 12928−12932. (d) Tang, T.; Jiang, W.-J.; Niu, S.; Liu, N.; Luo,
(6) (a) Li, S.-L.; Xu, Q. Metal-Organic Frameworks as Platforms for
Clean Energy. Energy Environ. Sci. 2013, 6, 1656−1683. (b) Xiao, J.-
D.; Shang, Q.; Xiong, Y.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L.
Boosting Photocatalytic Hydrogen Production of a Metal-Organic
Framework Decorated with Platinum Nanoparticles: The Platinum
Location Matters. Angew. Chem., Int. Ed. 2016, 55, 9389−9393.
(c) An, Y.; Xu, B.; Liu, Y.; Wang, Z.; Wang, P.; Dai, Y.; Qin, X.;
Zhang, X.; Huang, B. Photocatalytic Overall Water Splitting over
MIL-125(Ti) upon CoPi and Pt Co-catalyst Deposition. Chemis-
tryOpen 2017, 6, 701−705. (d) Shi, D.; He, C.; Qi, B.; Chen, C.; Niu,
J.; Duan, C. Merging of the Photocatalysis and Copper Catalysis in
Metal-Organic Frameworks for Oxidative C-C Bond Formation.
Chem. Sci. 2015, 6, 1035−1042. (e) Shi, D.; He, C.; Sun, W.; Ming,
Z.; Meng, C.; Duan, C. A Photosensitizing Decatungstate-Based MOF
as Heterogeneous Photocatalyst for the Selective C-H Alkylation of
Aliphatic Nitriles. Chem. Commun. 2016, 52, 4714−4717. (f) Diercks,
C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C.;
Zhao, Y.; Chang, C. J.; Yaghi, O. M. Reticular Electronic Tuning of
Porphyrin Active Sites in Covalent Organic Frameworks for
Electrocatalytic Carbon Dioxide Reduction. J. Am. Chem. Soc. 2018,
(
5
H.; Chen, Y.-Y.; Jin, S.-F.; Gao, F.; Wan, L.-J.; Hu, J.-S. Electronic and
Morphological Dual Modulation of Cobalt Carbonate Hydroxides by
Mn Doping toward Highly Efficient and Stable Bifunctional
Electrocatalysts for Overall Water Splitting. J. Am. Chem. Soc. 2017,
1
39, 8320−8328. (e) Wu, Y.-P.; Zhou, W.; Zhao, J.; Dong, W.-W.;
Lan, Y.-Q.; Li, D.-S.; Sun, C.; Bu, X. Surfactant-Assisted Phase-
Selective Synthesis of New Cobalt MOFs and Their Efficient
Electrocatalytic Hydrogen Evolution Reaction. Angew. Chem., Int.
Ed. 2017, 56, 13001−13005.
(
2) (a) Wang, Y. L.; Nie, T.; Li, Y. H.; Wang, X. L.; Zheng, L. R.;
Chen, A. P.; Gong, X. Q.; Yang, H. G. Black Tungsten Nitride as a
Metallic Photocatalyst for Overall Water Splitting Operable at up to
7
65 nm. Angew. Chem., Int. Ed. 2017, 56, 7430−7434. (b) Godin, R.;
1
40, 1116−1122. (g) Le Ouay, B. L.; Kitagawa, S.; Uemura, T.
Wang, Y.; Zwijnenburg, M. A.; Tang, J.; Durrant, J. R. Time-Resolved
Spectroscopic Investigation of Charge Trapping in Carbon Nitrides
Photocatalysts for Hydrogen Generation. J. Am. Chem. Soc. 2017, 139,
Opening of an Accessible Microporosity in an Otherwise Nonporous
Metal-Organic Framework by Polymeric Guests. J. Am. Chem. Soc.
2
017, 139, 7886−7892. (h) Chen, D.-M.; Liu, X.-H.; Zhang, N.-N.;
5
216−5224. (c) Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.; Chai,
Liu, C.-S.; Du, M. Immobilization of Polyoxometalate in a Cage-Based
Metal-Organic Framework towards Enhanced Stability and Highly
Effective Dye Degradation. Polyhedron 2018, 152, 108−113.
S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for
Artificial Photosynthesis and Environmental Remediation: Are We a
Step Closer To Achieving Sustainability. Chem. Rev. 2016, 116,
(i) Wang, X.-K.; Liu, J.; Zhang, L.; Dong, L.-Z.; Li, S.-L.; Kan, Y.-
7
159−7329. (d) Wang, M.; Yang, Y.; Shen, J.; Jiang, J.; Sun, L.
H.; Li, D.-S.; Lan, Y.-Q. Monometallic Catalytic Models Hosted in
Stable Metal-Organic Frameworks for Tunable CO Photoreduction.
ACS Catal. 2019, 9, 1726−1732.
(
Family in Coordination Chemistry and Crystal Engineering. Coord.
Chem. Rev. 2010, 254, 1−18. (b) Ford, P. C.; Cariati, E.; Bourassa, J.
Photoluminescence Properties of Multinuclear Copper(I) Com-
pounds. Chem. Rev. 1999, 99, 3625−3647.
Visible-Light-Absorbing Semiconductor/Molecular Catalyst Hybrid
Photoelectrodes for H2 or O2 Evolution: Recent Advances and
Challenges. Sustainable Energy Fuels. 2017, 1, 1641−1663.
2
7) (a) Peng, R.; Li, M.; Li, D. Copper(I) Halides: A Versatile
(
3) (a) Shen, J.; Wang, M.; Zhang, P.; Jiang, J.; Sun, L.
Electrocatalytic Water Oxidation by Copper(II) Complexes Contain-
ing a Tetra- or Pentadentate Amine-Pyridine Ligand. Chem. Commun.
017, 53, 4374−4377. (b) Wang, Y.; Li, F.; Zhou, X.; Yu, F.; Du, J.;
Bai, L.; Sun, L. Highly Efficient Photoelectrochemical Water Splitting
2
with an Immobilized Molecular Co O Cubane Catalyst. Angew.
(8) (a) Shi, D.; Zheng, R.; Sun, M.-J.; Cao, X.; Sun, C.-X.; Cui, C.-J.;
Liu, C.-S.; Zhao, J.; Du, M. Semiconductive Copper(I)-Organic
Frameworks for Efficient Light-Driven Hydrogen Generation Without
Additional Photosensitizers and Cocatalysts. Angew. Chem., Int. Ed.
2017, 56, 14637−14641. (b) Chen, D.-M.; Sun, C.-X.; Liu, C.-S.; Du,
M. Stable Layered Semiconductive Cu(I)-Organic Framework for
4
4
Chem., Int. Ed. 2017, 56, 6911−6915. (c) Lv, H.; Ruberu, T. P. A.;
Fleischauer, V. E.; Brennessel, W. W.; Neidig, M. L.; Eisenberg, R.
Catalytic Light-Driven Generation of Hydrogen from Water by Iron
Dithiolene Complexes. J. Am. Chem. Soc. 2016, 138, 11654−11663.
(
d) Zhou, W.; Huang, D.-D.; Wu, Y.-P.; Zhao, J.; Wu, T.; Zhang, J.;
F
Inorg. Chem. XXXX, XXX, XXX−XXX