Communication
Table 1. The hydrodynamic radius calculated from the DOSY experiments.
added to the above mixture and continued stirred at room temper-
ature for 24 h. The reaction was quenched by water. The DMF was
removed in vacuo and the residue was dissolved in CH Cl . The
Sample
lg D (lg m2 s–1
)
D (10–10 m2 s–1
)
r [Å]
2
2
1
4
[
–8.858
–9.072
–9.125
1.390
0.847
0.750
2.86
4.70
5.30
organic phase was washed with water, dried with anhydrous
Na SO and concentrated under vacuum. The residue was purified
2
4
4 + 2H]2+
by silica-gel column chromatography (CH Cl /MeOH = 50:1) to af-
2
2
ford pseudo[1]rotaxane 1 (0.26 g, 20 %) as a white solid. Mp. 142–
1
1
43 °C. H NMR (400 MHz, CDCl ) δ = 7.12 (s, 1 H), 7.04 (s, 1 H),
3
6.95–6.92 (m, 3 H), 6.83 (s, 1 H), 6.79 (s, 1 H), 6.65 (s, 1 H), 6.61 (s, 1
H), 6.42 (s, 1 H), 6.17 (s, 2 H), 5.18 (s, 2 H), 4.18 (s, 2 H), 3.94–3.59
m, 38 H), 3.43 (s, 2 H), 2.84 (s, 2 H), 0.19 (s, 4 H). 13C NMR (100 MHz,
CDCl , 298 K) δ = 178.1, 151.2, 150.9, 150.8, 150.6, 150.4, 150.1,
(
3
1
1
1
5
2
9
50.1, 149.9, 149.4, 149.3, 141.2, 129.1, 129.0, 128.9, 128.7, 128.5,
27.9, 127.8, 127.7, 127.2, 116.5, 115.4, 115.2, 114.5, 114.5, 114.2,
13.6, 113.5, 113.1, 112.8, 112.2, 70.9, 69.9, 69.4, 66.6, 65.6, 56.5,
6.4, 56.4, 56.1, 55.8, 55.7, 55.6, 55.4, 54.6, 51.7, 30.5, 30.5, 29.7, 28.8,
+
8.0, 27.8. HR-MS (ESI): calcd. for [1 + H] : 946.4372, found m/z =
+
46.4378; calcd. for [1 + Na] : 968.4192, found m/z = 968.4192.
Acknowledgments
We gratefully thank the financial support of the National Natu-
ral Science Foundation of China (Nos. 21871135, 21871136).
Keywords: Self-assembly · Pseudo[1]rotaxanes · Acid/base-
control · Molecular shuttle
[
[
[
1] D. A. Leigh, Angew. Chem. Int. Ed. 2016, 55, 14506–14508; Angew. Chem.
2016, 128, 14722.
2] C. O. Dietrich-Buchecker, J. P. Sauvage, J. P. Kintzinger, Tetrahedron Lett.
1983, 24, 5095–5098.
3] For examples of molecular machine, see: a) E. R. Kay, D. A. Leigh, F.
Zerbetto, Angew. Chem. Int. Ed. 2007, 46, 72–191; Angew. Chem. 2007,
Scheme 2. Assemble process of 1 in different condition.
nation of pyridine the interlocked-dimer 4 changed from
1
19, 72; b) J. F. Stoddart, Chem. Soc. Rev. 2009, 38, 1521–1529; c) J. E.
shrinking state to extension state (Scheme 2).
Beves, B. A. Blight, C. J. Campbell, D. A. Leigh, R. T. McBurney, Angew.
Chem. Int. Ed. 2011, 50, 9260–9327; Angew. Chem. 2011, 123, 9428; d)
R. S. Forgan, J.-P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434–
5
464; e) G. T. Spence, P. D. Beer, Acc. Chem. Res. 2013, 46, 571–586; f) S.
Conclusions
Kassem, T. van Leeuwen, A. S. Lubbe, M. R. Wilson, B. L. Feringa, D. A.
Leigh, Chem. Soc. Rev. 2017, 46, 2592–2621; g) T. van Leeuwen, A. S.
Lubbe, P. Štacko, S. J. Wezenberg, B. L. Feringa, Nat. Rev. Chem. 2017, 1,
In summary, the host–guest interaction and acid/base controlla-
ble properties between pyridine and MeP5A were investigated.
On the basis of that, an ethylene glycol bridged pyridine and
pillar[5]arene based mechanically selflocked pseudo[1]rotaxane
0
096; h) X. Ren, J. Zhang, M. Cheng, Q. Wang, J. Jiang, L. Wang, Tetra-
hedron Lett. 2018, 59, 2197–2204.
[
4] a) X. Ma, H. Tian, Chem. Soc. Rev. 2010, 39, 70–80; b) S. Dong, J. Yuan, F.
Huang, Chem. Sci. 2014, 5, 247–252; c) M. Xue, Y. Yang, X. Chi, X. Yan, F.
Huang, Chem. Rev. 2015, 115, 7398–7501; d) X.-Q. Wang, W.-J. Li, W.
Wang, H.-B. Yang, Chem. Commun. 2018, 54, 13303–13318.
1
was synthesized. Furthermore, MeP5A unit of pseudo[1]rotax-
ane 1 could shuttle between ethylene glycol chain and pyridine
unit as an acid/base-controllable molecular shuttle. Moreover,
DOSY experiments indicated that pseudo[1]rotaxane 1 per-
formed as selflocked-monomer in low concentration (10 m
and interlocked-dimer (100 m
addition of TFA (2.0 equiv.) to concentrated solution (100 m
[5] For examples of crown ether based pseudorotaxanes, see: a) K. Hiratani,
M. Kaneyama, Y. Nagawa, E. Koyama, M. Kanesato, J. Am. Chem. Soc.
2
2
Org. Lett. 2012, 14, 5900–5903; d) H. Li, J.-N. Zhang, W. Zhou, H. Zhang,
Q. Zhang, D.-H. Qu, H. Tian, Org. Lett. 2013, 15, 3070–3073; e) Q. Wang,
B. Xia, J. Xu, L. Tian, M. Cheng, J. Jiang, Dyes Pigm. 2018, 159, 513–516.
For examples of cyclodextrin based pseudorotaxanes, see: f) S. Menuel,
N. Azaroual, D. Landy, N. Six, F. Hapiot, E. Monflier, Chem. Eur. J. 2011,
004, 126, 13568–13569; b) H. Li, X. Li, H. Ågren, D.-H. Qu, Org. Lett.
014, 16, 4940–4943; c) H. Li, H. Zhang, Q. Zhang, Q.-W. Zhang, D.-H. Qu,
M
)
M
) in high concentration. After
M
)
of 4, interlocked-dimer 4 could change from shrinking state to
extension state.
1
7, 3949–3955; g) J. Cao, X. Ma, M. Min, T. Cao, S. Wu, H. Tian, Chem.
Commun. 2014, 50, 3224–3226; h) Y. Liu, Z.-X. Yang, Y. Chen, J. Org. Chem.
008, 73, 5298–5304; i) Y. Liu, C. Chipot, X. Shao, W. Cai, J. Phys. Chem.
Experimental Section
2
C 2014, 118, 19380–19386; j) A. Miyawaki, P. Kuad, Y. Takashima, H. Yama-
guchi, A. Harada, J. Am. Chem. Soc. 2008, 130, 17062–17069; k) C. Gao,
X. Ma, Q. Zhang, Q. Wang, D. Qu, H. Tian, Org. Biomol. Chem. 2011, 9,
General Procedure for the Synthesis of Pseudo[1]rotaxane 1: To
a solution of NaH (0.082 g, 3.40 mmol) in 10 mL of anhydrous DMF,
slowly added a solution of compound 2 (0.50, 0.68 mmol) in 5 mL
of anhydrous DMF. Then the mixture was stirred at room tempera-
ture for 0.5 h. After that, compound 3 (0.20 g, 0.68 mmol) was
1
126–1132; l) P. Franchi, M. Fanì, E. Mezzina, M. Lucarini, Org. Lett. 2008,
10, 1901–1904; m) K. Yamauchi, A. Miyawaki, Y. Takashima, H. Yamaguchi,
A. Harada, Org. Lett. 2010, 12, 1284–1286.
Eur. J. Org. Chem. 0000, 0–0
www.eurjoc.org
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim