Paper
RSC Advances
perform some control experiments. As displayed in Fig. S22b,†
the absorption spectrum of G-BODIPY3P52 in the presence of
TEMPO showed no apparent change in comparison to that of G-
BODIPY3P52 in the absence of TEMPO (Fig. S22a†) upon irra-
diation at 311 nm light. Furthermore, a striking contrast for the
absorbance variation of the pseudo[3]rotaxane at 503 nm in the
presence and absence of TEMPO is presented in Fig. S22c.†
Therefore, the above investigations demonstrated that photo-
reaction of P5 caused by free radicals further triggered photo-
decomposition of G-BODIPY upon irradiation at 311 nm light.
In the control experiments, we selected compound (4) that
lacked the valeronitrile binding site to investigate its photo-
irradiation experiments in the presence and absence of P5 using
UV-Vis absorption and uorescence emission spectra. As shown
in Fig. S23 and S24,† the photolysis of compound (4) in the
presence of P5 without the host–guest complexation was also
achieved upon irradiation at 311 nm light, which further
implied that these photodecomposition reactions were caused
by free radicals and not related to supramolecular interactions.
3 S. S. Beheraa, S. Dasb, P. K. Parhia, S. K. Tripathyb,
R. K. Mohapatrac and M. Debatac, Desalin. Water Treat.,
2017, 60, 249–260.
4 (a) G. Crini, Bioresour. Technol., 2006, 97, 1061–1085; (b)
V. K. Gupta and Suhas, J. Environ. Manage., 2009, 90, 2313–
2342.
5 (a) M. Chen, M. Zhong and J. A. Johnson, Chem. Rev., 2016,
116, 10167–10211; (b) G. Liu, Y. M. Zhang, X. Xu, L. Zhang,
Q. Yu, Q. Zhao, C. Zhao and Y. Liu, Adv. Opt. Mater., 2017,
5, 1700770; (c) G. Liu, J. Zhu, Y. Zhou, Z. Dong, X. Xu and
P. Mao, Org. Lett., 2018, 20, 5626–5630; (d) G. Liu, L. Wang,
Y. Zhou, N. Li, H. Zhang, J. Zhu, P. Mao and X. Xu, Dyes
Pigm., 2020, 172, 107800.
6 R. A. Lorenzo, A. M. Carro and A. Concheiro, Anal. Bioanal.
Chem., 2015, 407, 4927–4948.
7 (a) V. Ramamurthy and J. Sivaguru, Chem. Rev., 2016, 116,
9914–9993; (b) Y. Liu, J. Genzer and M. D. Dickey, Prog.
Polym. Sci., 2016, 52, 79–106.
8 (a) J. Park, Q. Jiang, D. Feng and H. C. Zhou, Angew. Chem.,
Int. Ed., 2016, 55, 7188–7193; (b) J. Park, Q. Jiang, D. Feng,
L. Mao and H. C. Zhou, J. Am. Chem. Soc., 2016, 138, 3518–
3525; (c) Y. Qin, L. J. Chen, F. Dong, S. T. Jiang, G. Q. Yin,
X. Li, Y. Tian and H. B. Yang, J. Am. Chem. Soc., 2019, 141,
8943–8950; (d) G. Liu, X. Xu, Y. Chen, X. Wu, H. Wu and
Y. Liu, Chem. Commun., 2016, 52, 7966–7969; (e) Q. J. Hu,
Y. C. Lu, C. X. Yang and X. P. Yan, Chem. Commun., 2016,
52, 5470–5473.
9 (a) A. M. Kloxin, A. M. Kasko, C. N. Salinas and K. S. Anseth,
Science, 2009, 324, 59–63; (b) M. U. de la Orden, J. M. Montes,
J. M. Urreaga, A. Bento, M. R. Ribeir, E. Perez and
M. L. Cerrada, Polym. Degrad. Stab., 2015, 111, 78–88; (c)
L. Sun, Y. Yang, C. M. Dong and Y. Wei, Small, 2011, 7,
401–406; (d) C. C. Chen, W. H. Ma and J. C. Zhao, Chem.
Soc. Rev., 2010, 39, 4206–4219; (e) W. Zhao, W. H. Ma,
C. C. Chen, J. C. Zhao and Z. G. Shuai, J. Am. Chem. Soc.,
2004, 126, 4782–4783.
Conclusion
In summary, we synthesized a valeronitrile-modied BODIPY
derivative via the “Click” reaction as a guest. Holosymmetric
methoxyl-pillar[5]arene, as the host was prepared, and assem-
bled with the BODIPY guest to form a pseudo[3]rotaxane.
Importantly, pillar[5]arene as an activator could activate the
high-efficiency photolysis of the BODIPY dye via free radical
reactions, and was veried via UV-Vis absorption, uorescence
emission, NMR and HR-MS spectroscopy techniques. Through
a series of control experiments, we also demonstrated that the
photodecomposition reactions caused by free radicals were not
related to supramolecular interactions. The study provides
a new strategy to induce the efficient photodegradation of
residual and useless organic dyes.
10 (a) S. J. Wezenberg and B. L. Feringa, Org. Lett., 2017, 19,
Conflicts of interest
´
324–327; (b) M. Vlatkovic, B. L. Feringa and
There are no conicts of interest to declare.
S. J. Wezenberg, Angew. Chem., Int. Ed., 2016, 55, 1001–
1004; (c) J. Leng, G. Liu, T. Cui, S. Mao, P. Dong, W. Liu,
X. Q. Hao and M. P. Song, Dyes Pigm., 2021, 184, 108838.
11 (a) G. Liu, Y. M. Zhang, X. Xu, L. Zhang and Y. Liu, Adv. Opt.
Mater., 2017, 5, 1700770; (b) G. Liu, Y. M. Zhang, L. Zhang,
C. Wang and Y. Liu, ACS Appl. Mater. Interfaces, 2018, 10,
12135–12140.
Acknowledgements
We thank the National Natural Science Foundation of China
(No. 21801063), the Science and Technology Foundation of
Henan Province (No. 192102210039), the Colleges and Univer-
sities Key Research Program Foundation of Henan Province 12 (a) N. Kamatham, J. P. Da Silva, R. S. Givens and
(No. 19A150022) and China Postdoctoral Science Foundation
(No. 2018M642767) for their nancial support.
V. Ramamurthy, Org. Lett., 2017, 19, 3588–3591; (b)
N. Kamatham, D. C. Mendes, J. P. Da Silva, R. S. Givens
and V. Ramamurthy, Org. Lett., 2016, 18, 5480–5483; (c)
´
´
S. E. Border, R. Z. Pavlovic, L. Zhiquan and J. D. Badjic, J.
References
Am. Chem. Soc., 2017, 139, 18496–18499; (d) M. A. Romero,
´
1 (a) S. P. Dharupaneedi, S. K. Nataraj, M. Nadagouda,
K. R. Reddy, S. S. Shukla and T. M. Aminabhavi, Sep. Purif.
Technol., 2019, 210, 850–866; (b) P. S. Goh and A. F. Ismail,
Desalination, 2018, 434, 60–80.
2 (a) N. Kannan and M. M. Sundaram, Dyes Pigm., 2001, 51, 25–
40; (b) P. K. Malik, J. Hazard. Mater., 2004, 113, 81–88.
N. Bas&lio, A. J. Moro, M. Domingues, J. A. Gonzalez-
Delgado, J. F. Arteaga and U. Pischel, Chem.–Eur. J., 2017,
23, 13105–13111.
13 Y. X. Wang, Y. M. Zhang and Y. Liu, J. Am. Chem. Soc., 2015,
137, 4543–4549.
© 2021 The Author(s). Published by the Royal Society of Chemistry
RSC Adv., 2021, 11, 7454–7458 | 7457