Page 5 of 6
ACS Catalysis
ACKNOWLEDGMENT
making this mutant even more efficient for practical applica-
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
tion. The identification of the significant W191 provides a
promising way to expand (by engineering) the scope of S-
specific 1-aryl-DHIQs processing IREDs. Currently, engineer-
ing the upright binding cavities of IR2 is also in progress to
improve the performance and expand its substrate scope.
This work was financially supported by the NSFC (31322002,
1270119). We thank Wenbo Liu in the College of Chemistry
Wuhan University for providing the help of chiral analysis.
3
REFERENCES
In summary, through identification and evaluation of a large
collection of new IREDs (88 novel IREDs), a panel of steric-
hindrance tolerated IREDs with high catalytic efficiency and
stereo-specificity toward 1-ary-THIQs has been identified.
These enzymes are able to efficiently convert para- meta-
substituted methyl-, chloro-, and methoxyl-phenyl DHIQs into
corresponding THIQ products with high conversion and enan-
tioselectivity (both of R- and S-, up to > 99% e. e.). To the
most challenging substrates, including ortho-substituted phe-
nyl-DHIQs and diomethoxyl chloro-benzyl-DHIQ, both IR45
and IR2 maintain activity with good enantioselectivity in most
cases. The practical application of IR45 to generate the sol-
ifenacin intermediate S-1b was demonstrated via preparative
scale synthesis, providing a cost-effective solution to its cur-
(
1) Liu, W.; Liu, S.; Jin, R.; Guo, H.; Zhao, J. Org. Chem. Front.
2015, 2, 288-299.
(2) Chrzanowska, M.; Grajewska, A.; Rozwadowska, M. D. Chem.
Rev. 2016, 116, 12369-12465.
(3) Perez, M.; Wu, Z.; Scalone, M.; Ayad, T.; Ratovelomanana-Vidal,
V. Eur. J. Org. Chem. 2015, 6503-6514.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
4) Singh, I. P.; Shah, P. Expert Opin. Ther. Pat. 2017, 27, 17-36.
(5) Wu, Z.; Perez, M.; Scalone, M.; Ayad, T.; Ratovelomanana-Vidal,
V. Angew. Chem. Int. Ed. 2013, 52, 4925-4928.
(
6) Li, D.; Yang, D.; Wang, L.; Liu, X.; Wang, K.; Wang, J.; Wang,
P.; Liu, Y.; Zhu, H.; Wang, R. Chem. Eur. J. 2017, 23, 6974-6978.
7) Gitto, R.; Barreca, M. L.; De Luca, L.; De Sarro, G.; Ferreri, G.;
(
Quartarone, S.; Russo, E.; Constanti, A.; Chimirri, A. J. Med. Chem.
2003, 46, 197-200.
(8) von Nussbaum, F.; Miller, B.; Wild, S.; Hilger, C. S.; Schumann,
S.; Zorbas, H.; Beck, W.; Steglich, W. J. Med. Chem. 1999, 42, 3478-
3
1
rent resolution-based production way. Finally, the highly
conserved residue W191 was identified to be critical for sub-
strate accommodation. By introducing a smaller residue (Ala)
in the position, the catalytic efficiency 0f IR45 can be in-
creased by 8 fold. These results open a door for further im-
proving IREDs catalytic performance and creating other S-
specific enzymes via protein engineering. More so, the num-
bers of new IREDs (88 novel IREDs) disclosed in study is
almost two folds of the sum of previously identified IREDs
which enormously expands our knowledge and toolbox of
IREDs. Our work not only provides enzymatic solutions to
synthesize these important class of THIQs but also the se-
quence basis for unraveling the unusual substrate specificity of
IREDs to further generate more efficient enzymes via protein
engineering.
3
(
485.
9) Naito, R.; Yonetoku, Y.; Okamoto, Y.; Toyoshima, A.; Ikeda, K.;
Takeuchi, M. J. Med. Chem. 2005, 48, 6597-6606.
10) Abrams, P.; Andersson, K.-E. BJU Int. 2007, 100, 987-1006.
(
(11) Ji, Y.; Shi, L.; Chen, M.-W.; Feng, G.-S.; Zhou, Y.-G. J. Am.
Chem. Soc. 2015, 137, 10496-10499.
(
12) KöhlerV; Wilson, Y. M.; DürrenbergerM; GhislieriD;
ChurakovaE; QuintoT; KnörrL; HäussingerD; HollmannF; Turner, N.
J.; Ward, T. R. Nat. Chem. 2013, 5, 93-99.
(
13) Lichman, B. R.; Zhao, J.; Hailes, H. C.; Ward, J. M. Nat. Comm.
2017, 8, 14883.
14) Erdmann, V.; Lichmann, B. R.; Zhao, J.; Simon, R. C.; Kroutil,
(
W.; Ward, J. M.; Hailes, H. C.; Rother, D. Angew. Chem. Int. Ed.,
DOI: 10.1002/anie.201705855.
(
15) Ghislieri, D.; Green, A. P.; Pontini, M.; Willies, S. C.; Rowles,
I.; Frank, A.; Grogan, G.; Turner, N. J. J. Am. Chem. Soc. 2013, 135,
10863-10869.
(16) Li, G.; Yao, P.; Gong, R.; Li, J.; Liu, P.; Lonsdale, R.; Wu, Q.;
Lin, J.; Zhu, D.; Reetz, M. T. Chem. Sci. 2017, 8, 4093-4099.
ASSOCIATED CONTENT
The Supporting Information is available free of charge on the
ACS Publications website at DOI.
(
17) Foulkes, J. M.; Malone, K. J.; Coker, V. S.; Turner, N. J.; Lloyd,
J. R. ACS Catal. 2011, 1, 1589-1594.
18) Aleku, G. A.; France S. P.; Man, H.; Mangas-Sanchez, J.;
Supplementary materials and methods providing general mate-
rials and methods; synthesis, cloning, expression and purification
of IREDs; activity screening; biotransformation; determination of
kinetic constants; chiral HPLC analysis; imine substrates and
racemic amine synthesis; in silico modeling and docking. supple-
mentary tables providing IREDs information; isolated yield of
preparative reactions; HPLC columns and conditions used for the
chiral analysis of the biotransformation products; kinetic parame-
ters (with errors) of IR2, IR17 and IR45 towards imine; kinetic
parameters (with errors) of IR45 and its mutants at W191. Sup-
plementary figures providing SDS-PAGE analysis of IRED; de-
termination of kinetic constants; in silico models of IR2 and IR45
based on the template of Q1EQE0; partial sequence alignment of
IR1-IR100; HPLC analysis of the enzyme conversion; chiral
HPLC analysis of the enantioselectivity; kinetic data, and NMR
spectra (PDF).
(
Montgomery, S. L.; Sharma, M.; Leipold, F.; Hussain, S.; Grogan, G.;
Turner, N. J. Nat. Chem. DOI:10.1038/nchem.2782.
(
19) Leipold, F.; Hussain, S.; Ghislieri, D.; Turner, N. J.
ChemCatChem 2013, 5, 3505-3508.
20) Huber, T.; Schneider, L.; Präg, A.; Gerhardt, S.; Einsle, O.;
(
Müller, M. ChemCatChem 2014, 6, 2248-2252.
(21) Hussain, S.; Leipold, F.; Man, H.; Wells, E.; France, S. P.;
Mulholland, K. R.; Grogan, G.; Turner, N. J. ChemCatChem 2015, 7,
579-583.
(22) Wetzl, D.; Berrera, M.; Sandon, N.; Fishlock, D.; Ebeling, M.;
Müller, M.; Hanlon, S.; Wirz, B.; Iding, H. ChemBioChem 2015, 16,
1
749-1756.
23) Maugeri, Z.; Rother, D. Adv. Synth. Catal. 2016, 358, 2745-
2750.
24) Aleku, G. A.; Man, H.; France, S. P.; Leipold, F.; Hussain, S.;
(
(
Toca-Gonzalez, L.; Marchington, R.; Hart, S.; Turkenburg, J. P.;
Grogan, G.; Turner, N. J. ACS Catal. 2016, 6, 3880-3889.
AUTHOR INFORMATION
Corresponding Author
(
1
25) Scheller, P. N.; Nestl, B. M. Appl. Microbiol. Biotechnol. 2016,
00, 10509-10520.
(26) Man, H.; Wells, E.; Hussain, S.; Leipold, F.; Hart, S.;
Turkenburg, J. P.; Turner, N. J.; Grogan, G. ChemBioChem 2015, 16,
1052-1059.
*Email: quxd@whu.edu.cn
ORCID
Xudong Qu: 0000-0002-3301-8536
Notes
The authors declare no competing financial interest.
(27) Li, H.; Tian, P.; Xu, J.-H.; Zheng, G.-W. Org. Lett. 2017, 19,
3
151-3154.
(
28) Grogan, G.; Turner, N. J. Chem. Eur. J. 2016, 22, 1900-1907.
ACS Paragon Plus Environment