T. Suzuki et al. / Tetrahedron Letters 42 (2001) 4669–4671
4671
Although the detailed structure of alkaline earth cata-
lysts remains unclear, coldspray ionization mass spec-
trometry (CSI-MS)14 provided useful information
regarding the atomic constitution of the chiral Ca
alkoxides. The sample prepared from 4a and 3 equiv. of
(S,S)-5a [H2(HB)] gave the CSI-MS data, demonstrat-
ing that the major species is oligomeric. The eminent
peak at m/z 1922 corresponds to [Ca5H9(HB)8O]+. This
assignment is consistent with the result obtained with
the di-p-methoxy auxiliary (S,S)-5b15 [H2(HB*)], where
the major peak is shifted to m/z 2402 due to
[Ca5H9(HB*)8O]+. The Ca complex formed from 4a, 3
equiv. of H2(HB), and 1 equiv. of KSCN in a 4:1
C2H5CN–THF mixture gave a spectrum that exhibits a
III, C. F. J. Am. Chem. Soc. 1998, 120, 2768–2779; (b)
Zhong, G.; Lerner, R. A.; Barbas, III, C. F. Angew.
Chem., Int. Ed. 1999, 38, 3738–3741.
4. (a) List, B.; Lerner, R. A.; Barbas, III, C. F. J. Am.
Chem. Soc. 2000, 122, 2395–2396; (b) Notz, W.; List, B.
J. Am. Chem. Soc. 2000, 122, 7386–7387.
5. (a) Yamada, Y. M. A.; Yoshikawa, N.; Sasai, H.;
Shibasaki, M. Angew. Chem., Int. Ed. Engl. 1997, 36,
1871–1873; (b) Yamada, Y. M. A.; Shibasaki, M. Tetra-
hedron Lett. 1998, 39, 5561–5564; (c) Yoshikawa, N.;
Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J.
Am. Chem. Soc. 1999, 121, 4168–4178. For the synthesis
of either syn- or anti-a,b-dihydroxy ketones, see: (d)
Yoshikawa, N.; Kumagai, N.; Matsunaga, S.; Moll, G.;
Ohshima, T.; Suzuki, T.; Shibasaki, M. J. Am. Chem.
Soc. 2001, 123, 2466–2467.
6. Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122,
12003–12004.
7. Heathcock, C. H. In Comprehensive Organic Synthesis;
Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford,
1991; Vol. 2, pp. 133–179.
strong
peak
at
m/z
2019
due
to
[Ca5KH9(HB)8O(SCN)]+. These results indicate that
Ca, HB, and KSCN contribute to the formation of the
highly aggregated chiral complex. Despite the C2-sym-
metry of the auxiliary, (S,S)-5, the Ca complex has a
high degree of complexity. Although the less aggregated
Ca species might be responsible for the asymmetric
aldol reaction, such oligomeric catalysts must partici-
pate directly or indirectly in the asymmetric reaction in
view of significant asymmetric amplification.
8. Westerhausen, M. Inorg. Chem. 1991, 30, 96–101.
9. Wang, Z.-M.; Sharpless, K. B. J. Org. Chem. 1994, 59,
8302–8303.
10. No reaction occurred with a 1:1:1 mixture of 4a, (S,S)-
5a, and KSCN.
In summary, the newly devised Ca complexes catalyze
the asymmetric aldol reaction of acetophenone and
aliphatic aldehydes directly without structural modifica-
tion. The properties of the Ca catalysts are further
modifiable, hopefully, leading to more efficient cata-
lysts, because various chiral hydrobenzoin derivatives
are available.9,15 Although the catalytic utility of Ca
salts has not been extensively explored,16 this environ-
mentally benign and abundant alkaline earth metal
might be useful for contemporary organic synthesis.
11. Experimental procedure: A solution of 4a (671 mg, 3.13
mmol) in THF (16 mL) was added to a stirred solution of
(S,S)-5a (671 mg, 3.13 mmol) and KSCN (101 mg, 1.04
mmol) in C2H5CN (63 mL) over 30 min at room temper-
ature. The mixture was stirred overnight at room temper-
ature and the insoluble materials were removed by
filtration. Compounds 1 (40.0 mL, 344 mmol) and 2a
(3.80 mL, 35.0 mmol) were added to this catalyst solution
(3 mol%) at −20°C, and the mixture was stirred at −20°C
for 22 h. Then 1 M aqueous HCl was added. The mixture
was extracted with ether and washed with aqueous
NaHCO3 and brine. The organic layer was dried over
Na2SO4, concentrated under reduced pressure, and dis-
tilled (50°C/2 mmHg) to afford 1 (33.7 g, 90% recovery).
The residue was subjected to silica-gel column chro-
matography (12:1 hexane–ether) to give (R)-3a (6.26 g,
87% yield, 86% ee) and (S,S)-5a (610 mg, 91% recovery).
12. (a) Girard, C.; Kagan, H. B. Angew. Chem., Int. Ed.
1998, 37, 2922–2959; (b) Oguni, N.; Matsuda, Y.;
Kaneko, T. J. Am. Chem. Soc. 1988, 110, 7877–7878; (c)
Kitamura, M.; Okada, S.; Suga, S.; Noyori, R. J. Am.
Chem. Soc. 1989, 111, 4028–4036; (d) Noyori, R.; Suga,
S.; Oka, H.; Kitamura, M. Chem. Rec. 2001, 1, 85–100;
(e) Soai, K.; Shibata, T. In Catalytic Asymmetric Synthe-
sis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000;
Chapter 9.
Acknowledgements
This work was supported by the Ministry of Education,
Culture, Sports, Science, and Technology of Japan
(Grant No. 07CE2004).
References
1. (a) Noyori, R. Asymmetric Catalysis in Organic Synthe-
sis; John Wiley & Sons: New York, 1994; pp. 225–231;
(b) Sawamura, M.; Ito, Y. In Catalytic Asymmetric Syn-
thesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York,
2000; Chapter 8B1; (c) Carreira, E. M. In Catalytic
Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-
VCH: New York, 2000; Chapter 8B2. For reviews, see:
(d) Nelson, S. G. Tetrahedron: Asymmetry 1998, 9, 357–
389; (e) Gro¨ger, H.; Vogl, E. M.; Shibasaki, M. Chem.
Eur. J. 1998, 4, 1137–1141; (f) Machajewski, T. D.;
Wong, C.-H. Angew. Chem., Int. Ed. 2000, 39, 1352–
1374.
13. (a) Narasaka, K.; Miwa, T.; Hayashi, H.; Ohta, M.
Chem. Lett. 1984, 1399–1402; (b) Yamada, Y. M. A.
Ph.D. Thesis, The University of Tokyo, 1999.
14. Sakamoto, S.; Fujita, M.; Kim, K.; Yamaguchi, K. Tet-
rahedron 2000, 56, 955–964.
15. Murata, K.; Okano, K.; Miyagi, M.; Iwane, H.; Noyori,
R.; Ikariya, T. Org. Lett. 1999, 1, 1119–1121.
16. A chiral Ca aryloxide complex has been reported for the
Baylis–Hillman reaction. See: Yamada, Y. M. A.;
Ikegami, S. Tetrahedron Lett. 2000, 41, 2165–2169.
2. Nakagawa, M.; Nakao, H.; Watanabe, K. Chem. Lett.
1985, 391–394.
3. (a) Hoffmann, T.; Zhong, G.; List, B.; Shabat, D.;
Anderson, J.; Gramatikova, S.; Lerner, R. A.; Barbas,
.