Paper
Journal of Materials Chemistry B
(Table 1).57 In this study, the reported inhibition rates were
44–62% and 90–99.98% for A. niger and C. Albicans (Table 1).57
The antifungal activity of Co-MOF was due to the generation of
reactive nitrogen oxide species (NO) and H2O2. The Ce-MOF
exhibited high activity at a comparatively low concentration of
4 X.-P. Wu, L. Gagliardi and D. G. Truhlar, J. Am. Chem. Soc.,
2018, 140, 7904–7912.
5 H. N. Abdelhamid, Mater. Today Chem., 2020, 15, 100222.
6 A. A. Kassem, H. N. Abdelhamid, D. M. Fouad and
S. A. Ibrahim, Int. J. Hydrogen Energy, 2019, 44, 31230–31238.
7 K.-J. Kim, H.-J. Kim, H.-G. Park, C.-H. Hwang, C. Sung,
K.-S. Jang, S.-H. Park, B.-G. Kim, Y.-K. Lee, Y.-H. Yang,
J. H. Jeong and Y.-G. Kim, Sci. Rep., 2016, 6, 24489.
8 H. N. Abdelhamid, Z. Huang, A. M. El-Zohry, H. Zheng and
X. Zou, Inorg. Chem., 2017, 56, 9139–9146.
9 H. N. Abdelhamid, Microchim. Acta, 2018, 185, 200.
10 H. E. Emam, H. N. Abdelhamid and R. M. Abdelhameed,
Dyes Pigm., 2018, 159, 491–498.
11 M. N. Goda, H. N. Abdelhamid and A. E.-A. A. Said, ACS
Appl. Mater. Interfaces, 2020, 12, 646–653.
40 mg mL .
ꢂ1 57 Voriconazole-incorporated zinc 2-methylimidazolates
frameworks (V-ZIF) exhibited high penetration of C. Albicans
biofilms with an antifungal efficiency of 100% (Table 1).58
MOF-based antifungal agents are promising and offer several
advantages, such as high efficiency, low agent loading, and the
possibility to be modified with other agents, such as nano-
particles (Table 1). AU-1 showed enzyme-like activities, including
peroxidase-like activity, and could kill fungi with 93.3–99.3%
efficiency (Table 1). Thus, it could prevent the recolonization of the
fungi. The cerium-based MOF exhibited excellent ROS-scavenging
activity and mimicked superoxide dismutase and catalase.59 Thus, it
can be used further for biomedical applications, such as bio-
catalysis, biosensing, and drug delivery.
12 A. A. Kassem, H. N. Abdelhamid, D. M. Fouad and S. A.
Ibrahim, Microporous Mesoporous Mater., 2020, 305, 110340.
13 H. N. Abdelhamid, A. M. El-Zohry, J. Cong, T. Thersleff,
M. Karlsson, L. Kloo and X. Zou, R. Soc. Open Sci., 2019,
6, 190723.
Conclusions
14 L. Valencia and H. N. Abdelhamid, Carbohydr. Polym., 2019,
213, 338–345.
The solvothermal synthesis of a Ce-MOF, AU-1, was achieved
using a tri-topic carboxylic linker and cerium as the metal center.
The material had a crystalline phase with good thermal stability
up to 380 1C. It contained Ce in mixed-valence states (Ce4+ and
Ce3+). The antifungal activity of AU-1 was evaluated using different
bioanalytical methods, including dry mass, soluble proteins,
microscopic images, and colony-forming units. The data revealed
high species-dependent antifungal activity of the Ce-MOF. The
antifungal activity of the Ce-MOF increased with an increase in
material concentration. AU-1 possessed good enzymatic activities,
such as superoxide dismutation, catalase, and peroxidase, and
may be useful as a new anticancer, antioxidant, and antimicrobial
platform for other biomedical applications. This work promotes
the application of MOFs in nanomedicine and biomaterials.
15 H. N. Abdelhamid, M. Wilk-Kozubek, A. M. El-Zohry,
´
´
A. Bermejo Gomez, A. Valiente, B. Martın-Matute, A.-V.
Mudring and X. Zou, Microporous Mesoporous Mater.,
2019, 279, 400–406.
16 A. F. Abdel-Magied, H. N. Abdelhamid, R. M. Ashour, X. Zou
and K. Forsberg, Microporous Mesoporous Mater., 2019, 278,
175–184.
17 S. Sultan, H. N. Abdelhamid, X. Zou and A. P. Mathew, Adv.
Funct. Mater., 2018, 1805372.
¨
18 H. N. Abdelhamid, M. Dowaidar and U. Langel, Microporous
Mesoporous Mater., 2020, 110200.
19 H. N. Abdelhamid, Macromol. Chem. Phys., 2020, 221, 2000031.
¨
¨
20 H. N. Abdelhamid, M. Dowaidar, M. Hallbrink and U. Langel,
Microporous Mesoporous Mater., 2020, 300, 110173.
21 H. N. Abdelhamid, Dalton Trans., 2020, 49, 4416–4424.
22 X. Zhang, G. Li, D. Wu, X. Li, N. Hu, J. Chen, G. Chen and
Y. Wu, Biosens. Bioelectron., 2019, 137, 178–198.
23 W. Song, B. Zhao, C. Wang, Y. Ozaki and X. Lu, J. Mater.
Chem. B, 2019, 7, 850–875.
Conflicts of interest
There are no conflicts to declare.
24 Z. Liu, F. Wang, J. Ren and X. Qu, Biomaterials, 2019, 208,
21–31.
25 X. Li, M. Qi, C. Li, B. Dong, J. Wang, M. D. Weir, S. Imazato,
L. Du, C. D. Lynch, L. Xu, Y. Zhou, L. Wang and H. H. K. Xu,
J. Mater. Chem. B, 2019, 7, 6955–6971.
26 L. Luo, L. Huang, X. Liu, W. Zhang, X. Yao, L. Dou, X. Zhang,
Y. Nian, J. Sun and J. Wang, Inorg. Chem., 2019, 58, 11382–11388.
27 C. J. Alexopoulos, C. W. Mims and M. Blackwell, Introductory
Mycology, Wiley, New York, 4th edn, 1996, p. 868.
(accessed 8 December 2019).
Acknowledgements
The authors thank the Ministry of Higher Education and
Scientific Research (Egypt), Assiut University, and Institutional
Review Board (IRB) of the Faculty of Science at Assiut Univer-
sity, Egypt for support.
References
1 H.-C. Zhou, J. R. Long and O. M. Yaghi, Chem. Rev., 2012,
112, 673–674.
29 H. Ogawa, M. Fujimura, Y. Takeuchi and K. Makimura, Clin.
Exp. Allergy, 2012, 42, 1540–1541.
30 S. N. Baxi, J. M. Portnoy, D. Larenas-Linnemann, W.
Phipatanakul, C. Barnes, S. Baxi, C. Grimes, W. E. Horner,
2 J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and
J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450.
3 Z.-Y. Gu, J. Park, A. Raiff, Z. Wei and H.-C. Zhou, Chem-
CatChem, 2014, 6, 67–75.
J. Mater. Chem. B
This journal is © The Royal Society of Chemistry 2020