Recombination kinetics of diphenylcarbonyl oxide Russ.Chem.Bull., Int.Ed., Vol. 50, No. 5, May, 2001
797
Table 5. Thermodynamic parameters of complex formation of H2COO with acetonitrile and
ethylene
ZPEa
H°298 H°0
∆H°
∆G°b
KC
a
b
Compound,
complex
Etot
1
/a.u.
/L mol
1
kcal mol
H2COO
CH2=CH2
H2COO...CH2=CH2 268.168703
MeCN
189.576821
78.587458
18.90
30.91
50.84
27.53
47.50
2.55
2.40
5.17
2.74
5.56
1.53
3.54
0.06
132.754928
322.342812
H2COO...MeCN
5.60 0.53
60
a The values were corrected for anharmonicity of vibrations equal to 0.9614.21
b Changes in the Gibbs energy and concentration equilibrium constant were estimated using the
1
value ∆S° = 17 cal mol1 Ê
.
4. A. M. Nazarov, E. M. Chainikova, S. L. Khursan, I. A.
Kalinichenko, R. L. Safiullin, and V. D. Komissarov, React.
Kinet. Catal. Lett., 1998, 65, 311.
as the change in temperature 0 → 298 K (H°298 H°0)
(see Table 5). The complex of H2COO with acetonitrile
(∆H° = 5.60 kcal mol1) is stronger than the
5. Technics of Organic Chemistry. Organic Solvents. Physical
Properties and Methods of Purification, Ed. A. Weissberger,
Interscience Publishers, Inc., New York, 1955, 7.
6. M. Regitz and G. Maas, Diazo Compounds. Properties and
Synthesis, Academic Press, Orlando, 1986, 596 pp.
7. S. I. Maslennikov, A. I. Nikolaev, and V. D. Komissarov,
Kinet. Katal., 1979, 20, 326 [Kinet. Catal., 1979, 20 (Engl.
Transl.)].
8. N. H. Werstiuk, H. L. Casal, and J. C. Scaiano, Canad. J.
Chem., 1984, 62, 2391.
9. H. L. Casal, S. E. Sugamori, and J. C. Scaiano, J. Am.
Chem. Soc., 1984, 106, 7623.
1
H2COO...CH2=CH2 complex (∆H° = 1.53 kcal mol ).
The calculation of the entropy variation upon the com-
plex formation is less reliable due to the existence of
1
low-frequency vibrations (λ < 400 cm ) in the com-
plexes, which are the origin of significant errors in
∆S° determination. The ∆S° values for both complexes
1
1
are within the range of 727 cal mol
K . The
totality of the data indicates that nearly the whole
carbonyl oxide in acetonitrile occurs in the form of the
complex with the solvent (see Table 5), whereas the
presence of free carbonyl oxide is more probable in
benzene.
10. H. L. Casal, M. Tanner, N. H. Werstiuk, and J. C. Scaiano,
J. Am. Chem. Soc., 1985, 107, 4616.
11. J. C. Scaiano, W. G. McGimpsey, and H. L. Casal, J. Org.
Chem., 1989, 54, 1612.
12. K. B. Eisenthal, N. J. Turro, E. V. Sitzmann, I. R. Gould,
G. Hefferon, J. Langan, and Y. Cha, Tetrahedron, 1985,
41, 1543.
13. T. Nojima, K. Ishiguro, and Y. Sawaki, J. Org. Chem.,
1997, 62, 6911.
14. A. M. Nazarov, E. M. Chainikova, R. L. Safiullin, S. L.
Khursan, and V. D. Komissarov, React. Kinet. Catal. Lett.,
1997, 61, 173.
15. A. M. Nazarov, E. M. Chainikova, S. L. Khursan, A. B.
Ryzhkov, R. L. Safiullin, and V. D. Komissarov, Izv. Akad.
Nauk, Ser. Khim., 1998, 1329 [Russ. Chem. Bull., 1998, 47,
1292 (Engl. Transl.)].
16. D. Cremer, T. Schmidt, W. Sander, and P. Bischof, J. Org.
Chem., 1989, 54, 2515.
17. S. G. Entelis and R. P. Tiger, Kinetika reaktsii v zhidkoi
faze. Kolichestvennyi uchet vliyaniya sredy [Reaction Kinetics
in Liquid Phase. Quantitative Analysis of the Medium Effect],
Khimiya, Moscow, 1973, 416 pp. (in Russian).
18. C. Selcuki and V. Aviyente, Chem. Phys. Lett., 1998,
¹ 7, 669.
19. D. Cremer, J. Gauss, E. Kraka, J. F. Stanton, and R. J.
Bartlett, Chem. Phys. Lett., 1993, ¹ 6, 547.
20. D. Cremer, E. Kraka, and P. G. Szalay, Chem. Phys. Lett.,
1998, ¹ 12, 97.
The calculation of the spectral properties of the
H2COO complexes with a solvent (see Table 3) revealed
a strong hypsochromic shift (for acetonitrile ∆λmax = 38.5
(ππ*) and 94.1 (nπ*) nm). Since the phenyl ring in
carbonyl oxide decreases polarizability of the molecule,
one can expect a hypsochromic shift for the phenyl-
substituted carbonyl oxides.
Thus, both specific and non-specific solvations change
the properties of carbonyl oxide. Non-specific solvation
manifests itself in the polarization of carbonyl oxide
moiety and affects mainly the reactivity of Ph2COO,
decreasing it. Specific solvation determines the spectral
properties of carbonyl oxide. The stronger the complex
with a solvent, the greater the shift of λmax to the short-
wave region. The formation of strong complexes between
carbonyl oxide and a solvent decreases its reactivity.
References
1. C. Reichardt, Solvents and Solvent Effects in Organic Chem-
istry, VCH, Weinheim, 1988, 466 pp.
2. A. M. Nazarov, E. M. Chainikova, P. V. Krupin, S. L.
Khursan, and V. D. Komissarov, Izv. Akad. Nauk, Ser.
Khim., 2000, 1504 [Russ. Chem. Bull., 2000, 49, 1496 (Engl.
Transl.)].
21. A. P. Scott and L. Radom, J. Phys. Chem., 1996, 100, 16502.
3. A. M. Nazarov, S. L. Khursan, P. V. Krupin, and V. D.
Komissarov, Zh. Fiz. Khim., 2000, 74, 2043 [Russ. J. Phys.
Chem., 2000, 74 (Engl. Transl.)].
Received March 18, 2000;
in revised form November 30, 2000