Organic Letters
Letter
Chem. Res. 2018, 51, 2589−2599. (b) Liu, C.; Szostak, M.
Decarbonylative Cross-Coupling of Amides. Org. Biomol. Chem.
2018, 16, 7998−8010. (c) Dander, J. E.; Garg, N. K. Breaking Amides
using Nickel Catalysis. ACS Catal. 2017, 7, 1413−1423. (d) Takise, R.;
Muto, K.; Yamaguchi, J. Cross-Coupling of Aromatic Esters and
Amides. Chem. Soc. Rev. 2017, 46, 5864−5888. (e) Liu, C.; Szostak, M.
Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-
Catalyzed Reactions by N−C Amide Bond Activation. Chem. - Eur. J.
2017, 23, 7157−7173. (f) Meng, G.; Shi, S.; Szostak, M. Cross-
Coupling of Amides by N−C Bond Activation. Synlett 2016, 27, 2530−
2540.
(3) For lead references on amide bonds in drug discovery and polymer
chemistry, see: (a) Roughley, S. D.; Jordan, A. M. The Medicinal
Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of
Drug Candidates. J. Med. Chem. 2011, 54, 3451−3479. (b) Kaspar, A.
A.; Reichert, J. M. Future Directions for Peptide Therapeutics
Development. Drug Discovery Today 2013, 18, 807−817. (c) March-
ildon, K. Polyamides: Still Strong After Seventy Years. Macromol. React.
Eng. 2011, 5, 22−54. (d) Brunton, L.; Chabner, B.; Knollman, B.
Goodman and Gilman’s The Pharmacological Basis of Therapeutics;
MacGraw-Hill: New York, 2010.
(4) For representative acyl coupling, see: (a) Hie, L.; Nathel, N. F. F.;
Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.;
Garg, N. K. Conversion of Amides to Esters by the Nickel-Catalysed
Activation of Amide C−N Bonds. Nature 2015, 524, 79−83. (b) Meng,
G.; Szostak, M. Sterically Controlled Pd-Catalyzed Chemoselective
Ketone Synthesis via N−C Cleavage in Twisted Amides. Org. Lett.
2015, 17, 4364−4367. (c) Meng, G.; Shi, S.; Szostak, M. Palladium-
Catalyzed Suzuki-Miyaura Cross-Coupling of Amides via Site-Selective
N−C Bond Cleavage by Cooperative Catalysis. ACS Catal. 2016, 6,
7335−7339. (d) Lei, P.; Meng, G.; Ling, Y.; An, J.; Szostak, M. Pd-
PEPPSI: Pd-NHC Precatalyst for Suzuki-Miyaura Cross-Coupling
Reactions of Amides. J. Org. Chem. 2017, 82, 6638−6646. (e) Amani, J.;
Alam, R.; Badir, S.; Molander, G. A. Synergistic Visible-Light
Photoredox/Nickel-Catalyzed Synthesis of Aliphatic Ketones via N−
C Cleavage of Imides. Org. Lett. 2017, 19, 2426−2429. (f) Ni, S.;
Zhang, W.; Mei, H.; Han, J.; Pan, Y. Ni-Catalyzed Reductive Cross-
Coupling of Amides with Aryl Iodide Electrophiles via C−N Bond
Activation. Org. Lett. 2017, 19, 2536−2539. (g) Lei, P.; Meng, G.; Shi,
S.; Ling, Y.; An, J.; Szostak, R.; Szostak, M. Suzuki-Miyaura Cross-
Coupling of Amides and Esters at Room Temperature: Correlation
with Barriers to Rotation around C−N and C−O Bonds. Chem. Sci.
2017, 8, 6525−6530 and references cited therein .
(5) For representative decarbonylative coupling, see: (a) Meng, G.;
Szostak, M. General Olefin Synthesis by the Palladium-Catalyzed Heck
Reaction of Amides: Sterically Controlled Chemoselective N−C
Activation. Angew. Chem., Int. Ed. 2015, 54, 14518−14522. (b) Shi,
S.; Meng, G.; Szostak, M. Synthesis of Biaryls through Nickel-Catalyzed
Suzuki-Miyaura Coupling of Amides by Carbon-Nitrogen Bond
Cleavage. Angew. Chem., Int. Ed. 2016, 55, 6959−6963. (c) Meng,
G.; Szostak, M. Rhodium-Catalyzed C−H Bond Functionalization with
Amides by Double C−H/C−N Bond Activation. Org. Lett. 2016, 18,
796−799. (d) Yue, H.; Guo, L.; Liao, H. H.; Cai, Y.; Zhu, C.; Rueping,
M. Catalytic Ester and Amide to Amine Interconversion: Nickel-
Catalyzed Decarbonylative Amination of Esters and Amides by C−O
and C−C Bond Activation. Angew. Chem., Int. Ed. 2017, 56, 4282−
4285. (e) Yue, H.; Guo, L.; Lee, S. C.; Liu, X.; Rueping, M. Selective
Reductive Removal of Ester and Amide Groups from Arenes and
Heteroarenes through Nickel-Catalyzed C−O and C−N Bond
Activation. Angew. Chem., Int. Ed. 2017, 56, 3972−3976. (f) Shi, S.;
Szostak, M. Decarbonylative Cyanation of Amides by Palladium
Catalysis. Org. Lett. 2017, 19, 3095−3098. (g) Zhou, P. X.; Shi, S.;
Wang, J.; Zhang, Y.; Li, C.; Ge, C. Palladium/copper-catalyzed
decarbonylative heteroarylation of amides via C−N activation. Org.
therein .
via Amide C−N Bond Activation. J. Am. Chem. Soc. 2017, 139, 10228−
10231 and references cited therein .
(7) For a biomimetic esterification by N−C activation, see: Wybon, C.
C. D.; Mensch, C.; Hollanders, K.; Gadals, C.; Herrebout, W. A.; Ballet,
S.; Maes, B. U. W. Zn-Catalyzed tert-Butyl Nicotinate-Directed Amide
Cleavage as a Biomimic of Metallo-Exopeptidase Activity. ACS Catal.
2018, 8, 203−218.
(8) For a chromium-catalyzed N−C activation, see: Chen, C.; Liu, P.;
Luo, M.; Zeng, X. Kumada Arylation of Secondary Amides Enabled by
Chromium Catalysis for Unsymmetric Ketone Synthesis under Mild
Conditions. ACS Catal. 2018, 8, 5864−5858.
(9) For a cobalt-catalyzed esterification by N−C activation, see:
Bourne-Branchu, Y.; Gosmini, C.; Danoun, G. Cobalt-Catalyzed
Esterification of Amides. Chem. - Eur. J. 2017, 23, 10043−10047.
(10) For selected examples of N−C bond cleavage, see: (a) Zhang, Z.
B.; Ji, C. L.; Yang, C.; Chen, J.; Hong, X.; Xia, J. B. Nickel-Catalyzed
Kumada Coupling of Boc-Activated Aromatic Amines via Nondirected
Selective Aryl C−N Bond Cleavage. Org. Lett. 2019, 21, 1226−1231.
(b) Yuan, Y. C.; Kamaraj, R.; Bruneau, C.; Labasque, T.; Roisnel, T.;
Gramage-Doria, R. Unmasking Amides: Ruthenium-Catalyzed Proto-
decarbonylation of N-Substituted Phthalimide Derivatives. Org. Lett.
2017, 19, 6404−6407. (c) Hu, F.; Lalancette, R.; Szostak, M. Structural
Characterization of N-Alkylated Twisted Amides: Consequences for
Amide Bond Resonance and N−C Cleavage. Angew. Chem., Int. Ed.
2016, 55, 5062−5066. (d) Tobisu, M.; Nakamura, K.; Chatani, N.
Nickel-Catalyzed Reductive and Borylative Cleavage of Aromatic
Carbon-Nitrogen Bonds in N-Aryl Amides and Carbamates. J. Am.
Chem. Soc. 2014, 136, 5587−5590.
(11) (a) For a review, see ref 2a. (b) For the lead reference on C−X (X
= N, O) isomerization, see ref 4g. (c) Ben Halima, T.; Zhang, W.;
Yalaoui, I.; Hong, X.; Yang, Y.; Houk, K.; Newman, S. Palladium-
Catalyzed Suzuki−Miyaura Coupling of Aryl Esters. J. Am. Chem. Soc.
2017, 139, 1311−1318. (d) Dardir, A.; Melvin, P.; Davis, R.; Hazari, N.;
Beromi, M. Rapidly Activating Pd-Precatalyst for Suzuki−Miyaura and
Buchwald−Hartwig Couplings of Aryl Esters. J. Org. Chem. 2018, 83,
469−477. (e) Shi, S.; Lei, P.; Szostak, M. Pd-PEPPSI: A General Pd-
NHC Precatalyst for Suzuki−Miyaura Cross-Coupling of Esters by C−
O Cleavage. Organometallics 2017, 36, 3784−3789. (f) Li, G.; Shi, S.;
Szostak, M. Pd-PEPPSI: Water-Assisted Suzuki-Miyaura Cross-
Coupling of Aryl Esters at Room Temperature using a Practical
Palladium-NHC (NHC = N-Heterocyclic Carbene) Precatalyst. Adv.
Synth. Catal. 2018, 360, 1538−1543. (g) Chatupheeraphat, A.; Liao, H.
H.; Srimontree, W.; Guo, L.; Minenkov, Y.; Poater, A.; Cavallo, L.;
Rueping, M. Ligand-Controlled Chemoselective C(acyl)−O Bond vs
C(aryl)−C Bond Activation of Aromatic Esters in Nickel Catalyzed
C(sp2)−C(sp3) Cross-Couplings. J. Am. Chem. Soc. 2018, 140, 3724−
3735. (h) Guo, L.; Rueping, M. Decarbonylative Cross-Couplings:
Nickel Catalyzed Functional Group Interconversion Strategies for the
Construction of Complex Organic Molecules. Acc. Chem. Res. 2018, 51,
1185−1195.
(12) Liebman, J.; Greenberg, A. The origin of rotational barriers in
amides and esters. Biophys. Chem. 1974, 1, 222−226.
(13) Lei, P.; Meng, G.; Szostak, M. General Method for the Suzuki-
Miyaura Cross-Coupling of Amides Using Commercially Available, Air-
and Moisture-Stable Palladium/NHC (NHC = N-Heterocyclic
Carbene) Complexes. ACS Catal. 2017, 7, 1960−1965.
(14) Buchspies, J.; Szostak, M. Recent Advances in Acyl Suzuki Cross-
Coupling. Catalysts 2019, 9, 53.
(15) (a) Science of Synthesis: N-Heterocyclic Carbenes in Catalytic
Organic Synthesis; Nolan, S. P., Cazin, C. S. J., Eds.; Thieme: Stuttgart,
2017. (b) N-Heterocyclic Carbenes: From Laboratory Curiosities to
Efficient Synthetic Tools; Diez-Gonzalez, S., Ed.; RSC: Cambridge, 2016.
(c) N-Heterocyclic Carbenes; Nolan, S. P., Ed.; Wiley: Weinheim, 2014.
(d) N-Heterocyclic Carbenes in Transition Metal Catalysis, Cazin, C. S. J.,
Ed.; Springer: New York, 2011.
(16) (a) Fortman, G. C.; Nolan, S. P. N-Heterocyclic carbene (NHC)
ligands and palladium in homogeneous cross-coupling catalysis: a
perfect union. Chem. Soc. Rev. 2011, 40, 5151−5169. (b) Nelson, D. J.;
Nolan, S. P. Quantifying and understanding the electronic properties of
(6) For representative tandem coupling, see: Walker, J. A.; Vickerman,
K. L.; Humke, J. N.; Stanley, L. M. Ni-Catalyzed Alkene Carboacylation
E
Org. Lett. XXXX, XXX, XXX−XXX