J . Org. Chem. 1997, 62, 9385-9388
9385
Sch em e 1. En a n tioselective Syn th esis of
C2-Sym m etr ic
(2S,5S)-2,5-Dim eth yl-2,5-d ip h en ylp yr r olid in -1-oxy
Alter n a te Self-Regen er a tion of
Ster eocen ter s: En a n tioselective
Gen er a tion of a C2-Sym m etr ic Ch ir a l
Nitr oxid e a n d Its Red u ction to th e
Cor r esp on d in g, High ly Ster ica lly Hin d er ed
Am in e
Ra d ica l 3
J acques Einhorn,* Cathy Einhorn, Fabien Ratajczak,
Isabelle Gautier-Luneau, and J ean-Louis Pierre
Laboratoire de Chimie Biomime´tique,
LEDSS/ UMR CNRS 5616, Universite´ J . Fourier,
38041 Grenoble, France
Received October 1, 1997
Nitroxides continue to play a central role among
organic stable free radicals. They have been, and are
still, extensively used as spin labels1 and in spin trapping
experiments,2 but many other promising applications
have emerged more recently: they are now studied as
spin sources for the elaboration of organic magnetic
materials,3 as precursors of highly selective oxidants,4 or
as capping agents for the control of “living” free-radical
polymerization processes.5 Chiral nitroxides have at-
tracted a special interest in very recent years due to their
potential applications as enantioselective oxidation cata-
lysts, for the development of paramagnetic chiral liquid
crystals, or in stereoselective coupling reactions with
prochiral radicals.6 Moreover, chiral nitroxides can be
reductively transformed into the corresponding, poten-
tially valuable, chiral amines by very simple and mild
chemical processes.2a In this context, C2-symmetric chiral
nitroxides appear to be valuable synthetic targets, owing
to the well-recognized importance of C2 chiral auxiliaries
in asymmetric synthesis.7 Up to now, although several
C2-symmetric nitroxide have been described in their
racemic form,5c,8a-e examples of optically active C2 ni-
troxides remain scarce. Mu¨llen8f and Sogah5c prepared
racemic trans-2,5-dimethyl-2,5-diphenylpyrrolidin-1-oxy
radical 3. Mu¨llen separated its enantiomers on a half
gram scale by chiral HPLC. However, the absolute
configurations of the stereocenters remained unknown.
We describe herein an enantioselective approach to
nitroxide 3, starting from readily available optically
active trans-2,5-dimethylpyrrolidine (1b) (Scheme 1).
The principle of the synthesis is very simple: C2-
symmetric optically active pyrrolidine 1b, bearing two
equivalent stereogenic centers, was first oxidized into
optically active nitrone 2. The following synthesis uti-
lized the methodology originally developed by Keana8a-d
and also used by Mullen8f and proceeded via two succes-
sive nitrone nucleophilic addition-oxidation sequences.
This method was known as allowing an efficient control
of the relative stereochemistry of the newly created
stereocenters, the nucleophiles being introduced on the
most accessible faces of the intermediate nitrones, i.e.,
in the trans relationship with respect to the bulkiest
substituent. When applied to optically active nitrone 2,
an absolute control of the newly created stereocenters
was performed, generating optically active, C2-symmetric
nitroxide 3. Starting from C2-symmetric pyrrolidine 1,
the whole process can be conceptually related to See-
bach’s general principle of self-regeneration of stereo-
centers (SRS).9 In our case, each stereocenter alterna-
tively plays the role of “chiral memory”, the second one
being destroyed during oxidation into a nitrone. The
remaining stereocenter is, therefore, able to ensure the
absolute stereochemical control of the subsequent nu-
cleophilic addition to this nitrone.
(1) (a) Keana, J . F. W. Chem. Rev. 1978, 78, 37-64. For recent
examples see: (b) Bossmann, S. H.; Ghatlia, N. D.; Ottaviani, M. F.;
Turro, C.; Du¨rr, H.; Turro, N. J . Synthesis 1996, 1313-1319. (c) Ulrich,
G; Turek, P.; Ziessel, R.; De Cian, A.; Fischer, J . Chem. Commun. 1996,
2461-2462.
(2) (a) Aurich, H. G. in Nitrones, Nitronates and Nitroxides; Patai,
S., Rappoport, Z., Eds.; J ohn Wiley & Sons, Inc.: New York, 1989; pp
313-399. For a recent example, see: (b) Sankuratri, N.; J anzen, E.
G.; West, M. S.; Poyer, J . L. J . Org. Chem. 1997, 62, 1176-1178 and
references therein.
(3) See, for example: (a) Chiarelli, R.; Novak, M. A.; Rassat, A.;
Tholence, J . L. Nature 1993, 363, 147-149. (b) Cirujeda, J .; Mas, M.;
Molins, E.; Lanfranc de Panthou, F.; Laugier, J .; Park, J . G.; Paulsen,
C.; Rey, P.; Rovira, C.; Veciana, J . J . Chem. Soc., Chem. Commun.
1995, 709-710. (c) Inoue, K.; Hayamizu, T.; Iwamura, H.; Hashizume,
D.; Onashi, Y. J . Am. Chem. Soc. 1996, 118, 1803-1804.
Improved methods are known for the synthesis of
optically active trans-2,5-dimethylpyrrolidine.10 One of
the most convenient methods, reported by Masamune,11
starts from optically pure (2S,5S)-2,5-hexanediol,12 now
(4) (a) Einhorn, J .; Einhorn, C.; Ratajczak, F.; Pierre, J . L. J . Org.
Chem. 1996, 61, 7452-7454. For a review see: (b) de Nooy, A. E. J .;
Besemer, A. C.; van Bekkum, H. Synthesis 1996, 1153-1174.
(5) (a) Hawker, C. J . J . Am. Chem. Soc. 1994, 116, 11185-11186.
(b) Hawker, C. J . Angew. Chem., Int. Ed. Engl. 1995, 34, 1456-1459.
(c) Puts, R. D.; Sogah, D. Y. Macromolecules 1996, 29, 3323-3325. (d)
Connolly, T. J .; Scaiano, J . C. Tetrahedron Lett. 1997, 38, 1133-1136.
(6) (a) Ma, Z.; Huang, Q.; Bobbitt, J . M. J . Org. Chem. 1993, 58,
4837-4843. (b) Rychnovsky, S. D.; McLernon, T. L.; Rajapakse, H. J .
Org. Chem. 1996, 61, 1194-1195. (c) Tamura, R.; Susuki, S.; Azuma,
N.; Matsumoto, A.; Toda, F.; Kamimura, A.; Hori, K. Angew. Chem.,
Int. Ed. Engl. 1994, 33, 878-879. (d) Tamura, R.; Susuki, S.; Azuma,
N.; Matsumoto, A.; Toda, F.; Ishii, Y. J . Org. Chem. 1995, 60, 6820-
6825. (e) Braslau, R.; Burrill, L. C., II; Mahal, L. K.; Wedeking, T.
Angew. Chem., Int. Ed. Engl. 1997, 36, 237-238.
(8) (a) Lee, T. D.; Birrel, G. B.; Keana, J . F. W. J . Am. Chem. Soc.
1978, 100, 1618-1619. (b) Keana, J . F. W.; Seyedrezai, S. E.; Gaughan,
G. J . Org. Chem. 1983, 48, 2644-2647. (c) Keana, J . F. W.; Cuomo,
J .; Lex, L.; Seyedrezai, S. E. J . Org. Chem. 1983, 48, 2647-2654. (d)
Keana, J . F. W.; Prabhu., V. S. J . Org. Chem. 1986, 51, 4300-4301.
(e) Einhorn, J .; Einhorn, C.; Ratajczak, F.; Pierre, J . L. J . Chem. Soc.,
Chem. Commun. 1995, 1029-1030. (f) Benfaremo, N.; Steenbock, M.;
Klapper, M.; Mu¨llen, K.; Enkelmann, V.; Cabrera, K. Liebigs Ann.
1996, 1413-1415.
(9) Review: Seebach, D.; Sting, A. R.; Hoffmann, M. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 2708-2748.
(10) For a review on the synthesis of 2,5-disubstituted pyrrolidines
see: Pichon, M.; Figade`re, B. Tetrahedron: Asymmetry 1996, 7, 927-
964.
(7) Review: Whitesell, J . K. Chem. Rev. 1989, 89, 1581-1590.
S0022-3263(97)01812-4 CCC: $14.00 © 1997 American Chemical Society