Previously, we exploited this concept of different catalyst
molecularity in the asymmetric 1,3-dipolar cycloaddition
reaction of azomethine ylides, where two distinctive cata-
reactions, we examined the role of copper and zinc metals
in the presence of amino alcohol ligand 1.
1
8
8
lytically active species were postulated in the presence of
brucine-derived amino alcohol 1 (Figure 1) and metals with
different ionic radii: Cu(I)-L* and Ag(I)-(L*)2+n com-
plexes. Herein, we present a further extension of this
orthogonal enantioselectivity approach in the context of
catalytic asymmetric nitroaldol (Henry) reaction. Our strategy
in the asymmetric Henry reaction was based on the possible
orthogonal enantioselection of Cu(I)-L* and (Zn(II))2+n-L*
complexes.
a
Table 1. Selected Optimization Conditions
b
c
yield
(%)
ee (%)/
entry
metal
additive
solvent
CH Cl
config
1
2
3
CuOAc
CuOAc
CuOAc
CuOAc
CuOAc
CuOAc
Zn(OTf)
Zn(OTf)
Zn(OTf)
Zn(OTf)
Zn(OTf)
Zn(OTf)
Zn(OTf)
Zn(OTf)
Zn(OTf)
Et
Et
3
N
N
2
2
50
50
65
75
60
72
95
95
95
45
60
80
96
95
85
59/S
76/S
83/S
87/S
83/S
95/S
3/R
46/R
48/R
19/R
2/R
3
2-MeTHF
2-MeTHF
2-MeTHF
2-MeTHF
t-BuOH
t-BuOH
t-BuOH
t-BuOH
DBU
d
4
e
5
e
6
2 2
CH Cl
d
7
2
2
2
2
2
2
2
2
2
PhCH
PhCH
PhCH
3
d
8
i-Pr
2
EtN
3
3
d
9
Et
3
Et
3
Et
3
Et
3
Et
3
Et
3
Et
3
N
N
N
N
N
N
N
d
1
1
1
1
1
1
0
1
2
3
4
5
CHCl
Et
3
d
2
O
Figure 1. Brucine-derived amino alcohol 1.
d
2-MeTHF
THF
40/R
73/R
75/R
80/R
d
d, f
e, f
THF
THF
9
Since the seminal contribution of Shibasaki in 1992, the
catalytic asymmetric Henry reactions have received much
attention from the synthetic community due to the versatile
a
Reaction with metal (10 mol %) and ligand 1 (10 mol %) in 0.16 M
solvent. Isolated yield of 4a after column chromatography. Determined
by HPLC. Reaction at 0 °C. Reaction at -15 °C. H O (30 mol %) was
b
c
d
e
f
1
0
2
nature of the nitro group. Although there was a decade
long dormant period in its history, the subsequent develop-
ment of catalytic asymmetric Henry reactions using metal
used.
1
1
12
13
14
15
catalysis (Zn, Co, Cu, Mg, and Cr ) and organoca-
We first examined the Cu(I)-catalyzed asymmetric Henry
reaction of benzaldehyde 2a in the presence of 10 mol % of
amino alcohol ligand 1 at room temperature. Our brief test
reactions swiftly led to the identification of optimal Cu(I)
source; therefore, we further optimized the reaction condi-
tions using additives and temperature (Table 1). Initially, we
employed 20 mol % base to improve the sluggish reaction
16
talysis has greatly expanded our understanding of the basis
of reactivity and selectivity. One particular noteworthy aspect
of the asymmetric Henry reaction is the possible involvement
of M-L* complexes with a different molecularity; for
example, the Cu-catalyzed reactions are known to proceed
19
1
3
by a monometallic form of active species, whereas there
is strong evidence of multimetallic complexes as active
11a
species in the Zn-catalyzed reactions as proposed by Trost
(13) For Cu(II) catalysis, see: (a) Christensen, C.; Juhl, K.; Jørgensen,
K. A. Chem. Commun. 2001, 2222. (b) Evans, D. A.; Seidel, D.; Rueping,
M.; Lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2003,
1
1b
and Palomo. The recent mechanistic studies by Shibasaki
indeed confirm that the preferential nucleation of ligands in
his heterobimetallic catalyst systems were responsible for
the prominent enantioamplification in the asymmetric Henry
1
25, 12692. (c) Gan, C.; Lai, G.; Zhang, Z.; Wang, Z.; Zhou, M.-M.
Tetrahedron: Asymmetry 2006, 17, 725. (d) Maheswaran, H.; Prasanth,
K. L.; Krishna, G. G.; Ravikumar, K.; Sridhar, B.; Kantam, M. L. Chem.
Commun. 2006, 4066. (e) Ma, K.; You, J. Chem.sEur. J. 2007, 13, 1863.
(f) Bandini, M.; Piccinelli, F.; Tommasi, S.; Umani-Ronchi, A.; Ventrici,
C. Chem. Commun. 2007, 616. (g) Colak, M.; Aral, T.; Hosg o¨ ren, H.;
Demirel, N. Tetrahedron: Asymmetry 2007, 18, 1129. (h) Blay, G.; Climent,
E.; Fernandez, I.; Hernandez-Olmos, V.; Pedro, J. R. Tetrahedron:
Asymmetry 2007, 18, 1603. (i) Arai, T.; Watanabe, M.; Yanagisawa, A.
Org. Lett. 2007, 9, 3595. (j) Arai, T.; Yokoyama, N.; Yanagisawa, A.
Chem.sEur. J. 2008, 14, 2052. (k) Blay, G.; Domingo, L. R.; Hernandez-
Olmos, V.; Pedro, J. R. Chem.sEur. J. 2008, 14, 4725. For Cu(I) catalysis,
see: (l) Arai, T.; Watanabe, M.; Fujiwara, A.; Yokoyama, N.; Yanagisawa,
A. Angew. Chem., Int. Ed. 2006, 45, 5978. (m) Jiang, J.-J.; Shi, M.
Tetrahedron: Asymmetry 2007, 18, 1376. (n) Xiang, Y.; Wang, F.; Huang,
X.; Wen, Y.; Feng, X. Chem.sEur. J. 2007, 13, 829. (o) Qin, B.; Xiao, X.;
Liu, X.; Huang, J.; Wen, Y.; Feng, X. J. Org. Chem. 2007, 72, 9323. (p)
Arai, T.; Takashita, R.; Endo, Y.; Watanabe, M.; Yanagisawa, A. J. Org.
Chem. 2008, 73, 4903.
1
7
reaction. In order to investigate the orthogonal enantiose-
lectivity of M-L* complexes in catalytic asymmetric Henry
(
8) Kim, H, Y.; Shih, H. -J.; Knabe, W. E.; Oh, K. Angew. Chem., Int.
Ed. 2009, 48, 7420.
9) Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem.
Soc. 1992, 114, 4418.
10) For recent reviews, see: (a) Shibasaki, M.; Gr o¨ ger, H. In Compre-
(
(
hensiVe Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H.,
Eds.; Springer: Berlin, Germany, 1999; Vol. III, pp 1075-1090. (b) Palomo,
C.; Oiarbide, M.; Mielgo, A. Angew. Chem., Int. Ed. 2004, 43, 5442. (c)
Boruwa, J.; Gogoi, N.; Saikia, P.; Barua, N. C. Tetrahedron: Asymmetry
2
006, 17, 3315. (d) Palomo, C.; Oiarbide, M.; Laso, A. Eur. J. Org. Chem.
007, 2561.
2
(
11) (a) Trost, B. M.; Yeh, V. S. C. Angew. Chem., Int. Ed. 2002, 41,
(14) Choudary, B. M.; Ranganath, K. V. S.; Pal, U.; Kantam, M. L.;
Sreedhar, B. J. Am. Chem. Soc. 2007, 127, 13167.
8
4
61. (b) Palomo, C.; Oiarbide, M.; Laso, A. Angew. Chem., Int. Ed. 2005,
4, 3881. (c) Liu, S.; Wolf, C. Org. Lett. 2008, 10, 1831.
(15) (a) Kowalczyk, R.; Sidorowicz, L.; Skarzewski, J. Tetrahedron:
Asymmetry 2007, 18, 2581. (b) Kowalczyk, R.; Kwiatkowski, P.; Skarze-
wski, J.; Jurczak, J. J. Org. Chem. 2009, 74, 753.
(
12) Kogami, Y.; Nakajima, T.; Ashizawa, T.; Kezuka, S.; Ikeno, T.;
Yamada, T. Chem. Lett. 2004, 33, 614.
Org. Lett., Vol. 11, No. 24, 2009
5683