Communications
product (Scheme 4). We therefore prepared [18O]1d by
d) L. D. Slep, F. Neese, Angew. Chem. 2003, 115, 3048; Angew.
Chem. Int. Ed. 2003, 42, 2942; e) E. I. Solomon, T. C. Brunold,
M. I. Davis, J. N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. J.
Skulan, Y.-S. Yang, J. Zhou, Chem. Rev. 2000, 100, 235.
[3] a) J. T. Groves, R. C. Haushalter, M. Nakamura, T. E. Nemo,
B. J. Evans, J. Am. Chem. Soc. 1981, 103, 2884; b) Z. Gross, S.
Nimri, Inorg. Chem. 1994, 33, 1731; c) Y. M. Goh, W. Nam,
Inorg. Chem. 1999, 38, 914; d) W. Nam, S.-E. Park, I. K. Lim,
M. H. Lim, J. Hong, J. Kim, J. Am. Chem. Soc. 2003, 125, 14674.
[4] a) J. C. Price, E. W. Barr, B. Tirupati, J. M. Bollinger, Jr., C.
Krebs, Biochemistry 2003, 42, 7497; b) J. C. Price, E. W. Barr,
T. E. Glass, C. Krebs, J. M. Bollinger, Jr., J. Am. Chem. Soc.
2003, 125, 13008; c) D. A. Proshlyakov, T. F. Henshaw, G. R.
Monterosso, M. J. Ryle, R. P. Hausinger, J. Am. Chem. Soc. 2004,
126, 1022; d) P. J. Riggs-Gelasco, J. C. Price, R. B. Guyer, J. H.
Brehm, E. W. Barr, J. M. Bollinger, Jr., C. Krebs, J. Am. Chem.
Soc. 2004, 126, 8108.
2+
treating [(N4Py)FeIV O] with H218O and checked the
percentage of the 18O isotope in [18O]1d with electrospray
ionization mass spectrometry (80% 18O in [18O]1d, see
=
Scheme 4. Proposed mechanism for the oxidation of alcohol by heme
and nonheme oxoiron(iv) complexes.
[5] a) J.-U. Rohde, J.-H. In, M. H. Lim, W. W. Brennessel, M. R.
Bukowski, A. Stubna, E. Mꢀnck, W. Nam, L. Que, Jr., Science
2003, 299, 1037; b) M. H. Lim, J.-U. Rohde, A. Stubna, M. R.
Bukowski, M. Costas, R. Y. N. Ho, E. Mꢀnck, W. Nam, L.
Que, Jr., Proc. Natl. Acad. Sci. USA. 2003, 100, 3665; c) J.
Kaizer, E. J. Klinker, N. Y. Oh, J.-U. Rohde, W. J. Song, A.
Stubna, J. Kim, E. Mꢀnck, W. Nam, L. Que, Jr., J. Am. Chem.
Soc. 2004, 126, 472; d) A. Decker, J.-U. Rohde, L. Que, Jr., E. I.
Solomon, J. Am. Chem. Soc. 2004, 126, 5378; e) J.-U. Rohde, S.
Torelli, X. Shan, M. H. Lim, E. J. Klinker, J. Kaizer, K. Chen, W.
Nam, L. Que, Jr., J. Am. Chem. Soc. 2004, 126, 16750; f) C. V.
Sastri, M. S. Seo, M. J. Park, K. M. Kim, W. Nam, Chem.
Commun. 2005, 1405; g) S. O. Kim, C. V. Sastri, M. S. Seo, J.
Kim, W. Nam, J. Am. Chem. Soc. 2005, 127, 4178.
[6] a) V. Balland, M.-F. Charlot, F. Banse, J.-J. Girerd, T. A. Mattioli,
E. Bill, J.-F. Bartoli, P. Battioni, D. Mansuy, Eur. J. Inorg. Chem.
2004, 301; b) T. A. van den Berg, J. W. de Boer, W. R. Browne,
G. Roelfes, B. L. Feringa, Chem. Commun. 2004, 2550; c) C. A.
Grapperhaus, B. Mienert, E. Bill, T. Weyhermꢀller, K. Wie-
ghardt, Inorg. Chem. 2000, 39, 5306.
Supporting Information).[22] Upon addition of 25 equivalents
of benzyl alcohol to the solution of [18O]1d, the intermediate
reverted back to the starting [FeII(N4Py)]2+, and product
analysis with GC–MS revealed that ca. 5% of the oxygen in
the benzaldehyde product derived from the oxoiron(iv)
species. A control experiment, carried out by incubating
benzaldehyde in H218O under the identical conditions, showed
ca. 6% incorporation of the 18O isotope from H218O in
benzaldehyde due to solvent exchange. Based on the obser-
vation that the oxygen atom in the aldehyde product does not
derive from the oxoiron(iv) complex, we conclude that the
benzaldehyde product is formed by hydride transfer
(Scheme 4, pathway C), not by a gem-diol dehydration
(Scheme 4, pathway B).[21a,23]
In summary, we have reported the first example of alcohol
oxidation by mononuclear nonheme oxoiron(iv) complexes.
We have also reported mechanistic details of alcohol oxida-
tion that have been investigated with in situ generated high-
valent iron–oxo complexes of heme and nonheme ligands.
The reactivity of heme and nonheme oxoiron(iv) complexes
has been briefly compared as well. Finally, we have proposed
a plausible mechanism for alcohol oxidation by heme and
nonheme oxoiron(iv) intermediates, in which the oxidation of
alcohols occurs by an a-CH hydrogen atom abstraction
followed by electron transfer (Scheme 4, pathways A and C).
[7] a) S. S. Stahl, Angew. Chem. 2004, 116, 3480; Angew. Chem. Int.
Ed. 2004, 43, 3400; b) R. A. Sheldon, I. W. C. E. Arends, G.-J. T.
Brink, A. Dijksman, Acc. Chem. Res. 2002, 35, 774.
[8] J. W. Whittaker, Chem. Rev. 2003, 103, 2347.
[9] a) T. D. P. Stack, Dalton Trans. 2003, 1881; b) B. A. Jazdzewski,
W. B. Tolman, Coord. Chem. Rev. 2000, 200–202, 633; c) S. Itoh,
M. Taki, S. Fukuzumi, Coord. Chem. Rev. 2000, 198, 3.
[10] a) R. C. Pratt, T. D. P. Stack, J. Am. Chem. Soc. 2003, 125, 8716;
b) F. Thomas, G. Gellon, I. Gautier-Luneau, E. Saint-Aman, J.-
L. Pierre, Angew. Chem. 2002, 114, 3173; Angew. Chem. Int. Ed.
2002, 41, 3047; c) P. Chaudhuri, M. Hess, J. Mꢀller, K.
Hildenbrand, E. Bill, T. Weyhermꢀller, K. Wieghardt, J. Am.
Chem. Soc. 1999, 121, 9599; d) S. Itoh, M. Taki, S. Takayama, S.
Nagatomo, T. Kitagawa, N. Sakurada, R. Arakawa, S. Fukuzumi,
Angew. Chem. 1999, 111, 2944; Angew. Chem. Int. Ed. 1999, 38,
2774.
[11] A. D. N. Vaz, M. J. Coon, Biochemistry 1994, 33, 6442.
[12] J. H. Han, S.-K. Yoo, J. S. Seo, S. J. Hong, S. K. Kim, C. Kim,
Dalton Trans. 2005, 402.
[13] T. Wolter, W. Meyer-Klaucke, M. Mꢀther, D. Mandon, H.
Winkler, A. X. Trautwein, R. Weiss, J. Inorg. Biochem. 2000, 78,
117.
Received: February 21, 2005
Published online: June 2, 2005
Keywords: alcohols · enzyme models · iron · oxidation ·
.
reaction mechanisms
[1] a) B. Meunier, S. P. de Visser, S. Shaik, Chem. Rev. 2004, 104,
3947; b) W. Nam, Y. O. Ryu, W. J. Song, J. Biol. Inorg. Chem.
2004, 9, 654; c) S. Shaik, S. P. de Visser, D. Kumar, J. Biol. Inorg.
Chem. 2004, 9, 661; d) J. T. Groves, Proc. Natl. Acad. Sci. USA
2003, 100, 3569; e) P. R. Ortiz de Montellano, J. J. De Voss, Nat.
Prod. Rep. 2002, 19, 477; f) M. Sono, M. P. Roach, E. D. Coulter,
J. H. Dawson, Chem. Rev. 1996, 96, 2841.
[2] a) A. S. Borovik, Acc. Chem. Res. 2005, 38, 54; b) M. Costas,
M. P. Mehn, M. P. Jensen, L. Que, Jr., Chem. Rev. 2004, 104, 939;
c) C. He, Y. Mishina, Curr. Opin. Chem. Biol. 2004, 8, 201;
[14] Abbreviations used: tdcpp = meso-tetrakis(2,6-dichlorophenyl)-
porphinato dianion, tmp = meso-tetramesitylporphinato di-
anion,
N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)me-
thylamine, tpa = tris(2-pyridylmethyl)amine.
[15] A. Decker, E. I. Solomon, Angew. Chem. 2005, 117, 2292;
Angew. Chem. Int. Ed. 2005, 44, 2252.
[16] D. Dolphin, T. G. Traylor, L. Y. Xie, Acc. Chem. Res. 1997, 30,
251, and references therein.
4238
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 4235 –4239