Please do not adjust margins
Catalysis Science & Technology
Page 4 of 5
COMMUNICATION
Journal Name
Notes and references
DOI: 10.1039/D0CY00409J
1
Z. Zhang, Y. Kumamoto, T. Hashiguchi, T. Mamba, H.
Murayama, E. Yamamoto, T. Ishida, T. Honma, M. Tokunaga,
ChemSusChem, 2017, 10, 1-9.
2
(a) J. J. Dong, W. R. Browne, B. L. Feringa, Angew. Chem. Int.
Ed., 2015, 54, 734-744; (b) R. Jira, Angew. Chem. Int. Ed.,
2009, 48, 9034-9037; (c) J. Smidt, W. Hafner, R. Jira, R. Sieber,
J. Sedlmeier, A. Sabel, Angew. Chem. Int. Ed., 1962, 1, 80-88.
P. K. Park, S. J. O’Malley, D. R. Schmidt, J. L. Leighton, J. Am.
Chem. Soc., 2006, 128, 2796-2797.
(a) C. N. Cornell, M. S. Sigman, J. Am. Chem. Soc., 2005, 127,
2796-2797; (b) M. Sommovigo, H. Alper, J. Mol. Catal., 1994,
88, 151-158; (c) A. Naik, L. Meina, M. Zabel, O. Reiser, Chem.
Eur. J., 2010, 16, 1624-1628. (d) V. V. Namboodiri, R. S.
Varma, E. Sahle-Demessie, U. R. Pillai, Green Chem., 2002, 4,
170-173; (e) B. Liu, F. Jin, T. Wang, X. Yuan, W. Han, Angew.
Chem. Int. Ed., 2017, 56, 12712-12717.
SCN-
3
4
Figure 3. Titration experiment of active sites with KSCN. For the Co-N/C-800-non-
acid, 5 mol% of catalyst (20 mg) was added to the reaction system. In order to
eliminate the influence of the supporter on the reaction, 2.5 mol% of Co-N/C-
800 (20 mg) was added.
5
6
7
8
D. A. Chaudhari, R. A. Fernandes, J. Org. Chem., 2016, 81,
2113-2121
G. Zhang, X. Xie, Y. Wang, X. Wen, Y. Zhao, C. Ding, Org.
Biomol. Chem., 2013, 11, 2947-2950.
may be an intermediate rather than a by-product. Isotopic
labelling experiments indicate that the H adds across the olefin
stems from 2-propanol-d8. The reaction was failed when O2
was replaced with N2, which indicated that the oxygen in 3a
comes from O2 instead of other resources.
Y. F. Wang, Y. R. Gao, S. Mao, Y. L. Zhang, D. D. Guo, Z. L. Yan,
S. H. Guo, Y. Q. Wang, Org. Lett., 2014, 16, 1610-1613.
(a) B. Liu, F. Jin, T. Wang, X. Yuan, W. Han, Angew. Chem. Int.
Ed., 2017, 56, 12712–12717; (b) F. Puls, H. J. Knolker, Angew.
Chem. Int. Ed., 2018, 57, 1222-1226.
(a) T. Mukaiyama, T. Yamada, Bull. Chem. Soc. Jpn., 1995, 68,
17-35; (b) S. inoki, K. kato, T. takal, S. isayama, T. yamada, T.
mukaiyama, Chem. Lett., 1989, 515; (c) D. E. Hamilton, R. S.
Drago, A. Zombeck, J. Am. Chem. Soc., 1987, 109, 374-379;
(d) A. A. Khandar, K. Nejati, Z. Rezvani, Molecules, 2005, 10,
302-311.
Based on the above experiments and literature, the reaction
process can be proposed and was shown in the supporting
information (Scheme S2). First, it was reported that in ORR,
the superoxide species were formed by the electron transfer
from Co-3d orbitals to O2, where O2 was chemically adsorbed
on the single cobalt centres (A).16,17a-b According to the report
of literature, with the help of K2CO3, the iPrOH was
deprotonated to form E.17c-d Intermediate B formed through
intermediated F by abstracting proton by A from E.17a-b
Second, intermediate C was obtained via synergistic addition
of 1a and intermediate B, intermediate C can be further
decomposed into 3a and 2a. 3a can also be generated from
the oxidation of 2a.9 Finally, the whole catalytic cycle can be
completed by continuous oxidation of solvent to remove one
water molecule.16
In summary, the first heterogeneous cobalt catalyst used in
Wacker-type oxidation has been reported. This strategy
features the characteristics of high efficiency and good
environment. Catalysed by single atom dispersed Co-N/C
catalyst using isopropanol as hydrogen source, styrene was
oxidized to acetophenone with excellent yield (95%) and
regioselectivity (100%). Extensive characterization and control
experiments show that the active site of Wacker-type
oxidation reaction is monodisperse cobalt atom rather than
their nanoparticles counterparts. This work would provide an
alternative catalyst for the Wacker-type oxidation of aryl
alkenes to high-value-added chemicals.
9
81. (b)H. H. Luo, L. Y. Wang, S. S. Shang, J. Y. Niu, S. Gao,
Commun. Chem., 2019, 2, 17. (c) S. S. Shang, L. Y. Wang, W.
Dai, B. Chen, Y. Lv, S. Gao, Catal. Sci. Technol., 2016, 6, 5746-
5753;(d) B. Chen, S. S. Shang, L. Y. Wang, Y. Zhang, S. Gao,
Chem. Commun., 2016, 52, 481-484 (e) W. Liu, L. Zhang, W.
Yan, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T. Zhang,
Chem. Sci., 2016, 7, 5758-5764.
11 P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X.
Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem. Int. Ed.,
2016, 55, 10800-10805.
12 (a) H. Luo, L. Wang, G. Li, S. Shang, Y. Lv, J. Niu, S. Gao, ACS
Sustainable Chem. Eng., 2018, 6, 14188-14196; (b) M. C.
Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R.
Gerson, R. S. C. Smart, Appl. Surf. Sci., 2011, 257, 2717-2730;
(c) L. Zhang, A. Wang, W. Wang, Y. Huang, X. Liu, S. Miao, J.
Liu, T. Zhang, ACS Catal., 2015, 5, 6563-6572
13 D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G.
Sun, X. Bao, Angew. Chem. Int. Ed., 2013, 52, 371-375.
14 C. Tang, A.-E. Surkus, F. Chen, M.-M. Pohl, G. Agostini, M.
Schneider, H. Junge, M. Beller, Angew. Chem., 2017, 129,
16843-16847.
15 (a) H. Yang, X. Cui, X. Dai, Y. Deng, F. Shi, Nat. Commun.,
2015, 6, 6478-6489; (b) F. Puls, H. J. Knolker, Angew. Chem.
Int. Ed., 2018, 57, 1222-1226
16 S. Kattel, G. Wang, J. Phys. Chem. Lett., 2014, 5, 452-456.
17 (a) H. Zhou, S. Hong, H. Zhang, Y. Chen, H. Xu, X. Wang, Z.
Jiang, S. Chen, Y. Liu, Appl. Catal. B, 2019, 256, 117767-
117777; (b) M. Li, S. Wu, X. Yang, J. Hu, L. Peng, L. Bai, Q.
Huo, J. Guan, Appl. Catal. A, 2017, 543, 61-66. (c) H.
Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda,; J. Am. Chem.
Soc., 2005, 127, 9374-9375. (d) A. Banerjee, G. -R. Dick, T.
Yoshino, M. W. Kanan, Nature, 2016, 531, 215–219.
Financial support from the Department of Science and
Technology of Liaoning Province (No. 2019-ZD-0470) and he
National Natural Science Foundation of China (No. 21773227,
21403219, 21773232, and 21902151).
Conflicts of interest
There are no conflicts to declare.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins