References and notes
1. (a) Xie, J.; Pan, C.; Abdukadera, A.; Zhu, C. Chem. Soc. Rev. 2014, 43, 5245-5256; (b) Yamaguchi, J.;
Yamaguchi, A. D.; Itami, K. Angew. Chem. Int. Ed. 2012, 51, 8960-9009; (c) Jazzar, R.; Hitce, J.; Renaudat, A.;
Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16, 2654–2672; (d) Li, H.; Li, B. J.; Shi, Z. J. Catal. Sci.
Technol. 2011, 1, 191–206.
2
. (a) Tipson, R. S. J. Am. Chem. Soc. 1945, 67, 507–511; (b) Pi, D.; Jiang, K.; Zhou, H.; Sui, Y.; Uozumi, Y.; Zou,
K. RSC Adv. 2014, 4, 57875-57884; (c) Jin, J. J.; Niu, H. Y.; Qu, G. R.; Guo H. M.; Fossey, J. S.; RSC Adv. 2012, 2,
968–5971; (d) Graves V. B.; Shaikh, A. Tetrahedron Lett. 2013, 54, 695–698; (e) Vuppalapati S. V. N.; Lee, Y.
R. Tetrahedron 2012, 68, 8286–8292; (f) Niu, R.; Yang, S.; Xiao, J.; Liang T.; Li, X. Chin. J. Catal. 2012, 33,
636–1641; (g) Niu, R.; Xiao, J.; Liang T.; Li, X. W. Org. Lett. 2012, 14, 676–679; (h) Jian, J. J.; Wang, D. C.; Niu,
5
1
H. Y.; Wu, S.; Qu, G. R.; Zhang Z. B.; Guo, H. M. Tetrahedron 2013, 69, 6579–6584; (i) Wang, F. F.; Luo, C. P.;
Wang, Y.; Deng G. J.; Yang, L. Org. Biolmol. Chem. 2012, 10, 8605–8608.
3. (a) Rueping, M.; Tolstoluzhsky, N. Org. Lett. 2011, 13, 1095-1097; (b) Qian, B.; Guo, S.; Shao, J.; Zhu, Q.;
Yang, L.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2010, 132, 3650–3651; (c) Qian, B.; Guo, S.; Xia C.; Huang, H.
Adv. Synth. Catal. 2010, 352, 3195–3200; (d) Qian, B.; Xie, P.; Xie Y.; Huang, H. Org. Lett. 2011, 13, 2580–
2583.
4. (a) Qian, B.; Yang L.; Huang, H. M. Tetrahedron Lett. 2013, 54, 711–714; (b) Komai, H.; Yoshino, T.;
Matsunaga S.; Kanai, M. Org. Lett. 2011, 13, 1706–1709; (c) Liu, J. Y.; Niu, H. Y.; Wu, S.; Qu G. R.; Guo, H. M.
Chem. Commun. 2012, 48, 9723–9725.
5. (a) Xu, L.; Shao, Z.; Wang, L.; Zhao, H.; Xiao, J. Tetrahedron Lett. 2014, 55, 6856-6860; (b) Rao, N. N.;
Meshram, H. M. Tetrahedron Lett. 2013, 54, 5087-5090; (c) Meshram, H. M.; Nageswara Rao, N.; Rao, L. C.;
Kumar, N. S. Tetrahedron Lett. 2012, 53, 3963–3966; (d) Yan, Y.; Xu, K.; Fang Y.; Wang, Z. J. Org. Chem. 2011,
7
6, 6849–6859; (e) Raghu, M.; Rajasekhar, M.; Chandra Obula Reddy, B.; Suresh Reddy C.; Subba Reddy, B. V.
Tetrahedron Lett. 2013, 54, 3503–3506; (f) Xiao, J.; Zhao, H.; Wang, L.; Xu L.; Shao, Z. RSC Adv. 2014, 4,
3188–53191; (g) Xu, L.; Shao, Z.; Wang L.; Xiao, J. Org. Lett. 2014, 16, 796–799; (h) Nageswara N.; Meshram,
H. M. Tetrahedron Lett. 2013, 54, 1315–1317.
5
6
A previous attempt by Zhou, Uozumi and coworkers to react phenyl glyoxal (2a) with quinaldine (1d) in the
2
b
presence of Fe(OAc) (10 mol%) met with failure due to decomposition of 2a (see ref. ).
2
7. For a focused review about the application of aryl glyoxals in heterocyclic chemistry, see: Eftekhari-Sis, B.;
Zirak, M.; Akbari, A. Chem. Rev. 2013, 113, 2958−3043.
8. Representative procedure for additions of 2-methylazines 1 to aryl glyoxal hydrates 2 exemplified by the
synthesis of 2-hydroxy-1-phenyl-3-(pyridin-2-yl)propan-1-one (3a). Phenyl glyoxal hydrate (2a) (152 mg, 1
mmol) was placed into screw cap vial and dissolved in dioxane (2 ml) followed by addition of 2-picoline (1a)
(279 mg, 3 mmol). The reaction mixture was sealed and kept under stirring at 110 °C for 14 h. The resulting
mixture was diluted with DCM and evaporated with silica gel. Column chromatography with heptane-EtOAc
1
(
2050 %) delivered pure 3a (100 mg, 44 %). H NMR (400 MHz, CDCl
3
): δ 8.59-8.49 (m, 1H), 8.11-8.01 (m,
2
H), 7.66-7.56 (m, 2H), 7.55-7.44 (m, 2H), 7.23-7.11 (m, 2H), 5.55 (dd, J = 3.3, 8.5 Hz, 1H), 4.64 (bs, 1H), 3.36
1
3
(dd, J = 3.3, 14.5 Hz, 1H), 3.01 (dd, J = 8.5, 14.5 Hz, 1H); C NMR (100 MHz, CDCl ): δ 201.1, 158.1, 149.3,
3