C O M M U N I C A T I O N S
of electrochemistry and computational results. This material is available
References
(1) (a) Reynolds, J.; Skotheim, T. A. Handbook of Conducting Polymers, 3rd
ed.; CRC Press: Boca Raton, FL, 2007. (b) Electronic Materials: The
Oligomer Approach; Mu¨llen, K., Wegner, G., Eds.; Wiley-VCH: Weinheim,
Germany, 1998. (c) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl,
F. Science 1992, 258, 1474. (d) Katz, H. E.; Bao, Z. J. Phys. Chem. B
2000, 104, 671. (e) Facchetti, A. Mater. Today 2007, 10, 28.
(2) (a) Perepichka, I. F.; Perepichka, D. F. Handbook of Thiophene-Based
Materials; Wiley-VCH: Weinheim, Germany, 2009. (b) Fichou, D. Hand-
book of Oligo- and Polythiophenes; Wiley-VCH: Weinheim, Germany,
1999. (c) Mishra, A.; Ma, C.-Q.; Ba¨uerle, P. Chem. ReV. 2009, 109, 1141.
(d) Perepichka, I. F.; Perepichka, D. F.; Meng, H.; Wudl, F. AdV. Mater.
2005, 17, 2281. (e) Ba¨uerle, P. In Electronic Materials: The Oligomer
Approach; Mu¨llen, K., Wegner, G., Eds.; Wiley-VCH: Weinheim, Germany,
1998; Chapter 2.
(3) (a) Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452. (b) Chun, D.;
Cheng, Y.; Wudl, F. Angew. Chem., Int. Ed. 2008, 47, 8380. (c) Kaur, I.;
Stein, N. N.; Kopreski, R. P.; Miller, G. P. J. Am. Chem. Soc. 2009, 131,
3424.
(4) (a) Patra, A.; Wijsboom, Y. H.; Zade, S. S.; Li, M.; Sheynin, Y.; Leitus,
G.; Bendikov, M. J. Am. Chem. Soc. 2008, 130, 6734. (b) Li, M.; Patra,
A.; Sheynin, Y.; Bendikov, M. AdV. Mater. 2009, 21, 1707. (c) Li, M.;
Sheynin, Y.; Patra, A.; Bendikov, M. Chem. Mater. 2009, 21, 2482. (d)
Wijsboom, Y. H.; Patra, A.; Zade, S. S.; Sheynin, Y.; Li, M.; Shimon,
L. J. W.; Bendikov, M. Angew. Chem. 2009, 121, 5551.
Figure 5. Calculated [B3LYP/6-31G(d)] and experimental HOMO-LUMO
gaps vs the reciprocal of the number of oligomer units in R-oligofurans
and R-oligothiophenes. Experimental values for oligothiophenes were taken
from ref 20. The calculated [PBC/B3LYP/6-31G(d)] band gaps for polyfuran
and polythiophene are 2.41 and 2.06 eV, respectively.27
iophenes, as evident from their relatively low oxidation potentials.
For comparison, the oxidation potentials of 3T and 4T are 1.16
and 1.14 V, respectively, under similar conditions. In the cases of
4F-7F, smooth polymer growth was observed during repetitive
cycling (Figure 4b), in accord with an earlier report regarding
terfuran.26 The color of the formed film was yellowish-orange in
the neutral state and changed to green upon doping.
Extrapolation of the experimental λmax of oligofurans against the
reciprocal of the number of monomer units (1/n) affords a linear
correlation (Figure 5) with an intercept at 2.43 eV, which corre-
sponds to the calculated [PBC/B3LYP/6-31G(d)] band gap of
polyfuran27 (2.41 eV). A similar correlation was observed for the
experimental λmax of oligothiophenes. The calculated22 HOMO-
LUMO gaps of oligofurans and oligothiophenes are given in Figure
5 and Table S3 in the SI.27 It is interesting that the slope (both
experimental and calculated) is slightly steeper (by 0.2 eV × n)
for oligofurans than oligothiophenes, which may suggest that
oligofurans are better-conjugated.
In summary, we have introduced a new class of organic materials,
namely, long R-oligofurans, which fulfill the most important
requirements for a wide range of applications. The formation of
device-quality materials is often a trade-off between processability
and function. The materials introduced here combine higher
fluorescence, better packing, and greater rigidity with better
processability (due to their greater solubility) than the corresponding
oligothiophenes. These compounds have a unique combination of
physical properties required for organic electronic materials and in
addition can help shed light on the relatively unexplored polyfurans.
The materials reported here are the first examples of well-
characterized oligofuran-based materials. Importantly, furan-based
materials should be biodegradable and can be obtained directly from
renewable resources.
(5) Distefano, G.; Jones, D.; Guerra, M.; Favaretto, L.; Modelli, A.; Mengoli,
G. J. Phys. Chem. 1991, 95, 9746.
(6) (a) Kauffman, J. M.; Moyna, G. J. Heterocycl. Chem. 2002, 39, 981. (b)
Kauffmann, T.; Lexy, H. Chem. Ber. 1981, 114, 3667.
(7) Alternating furan-thiophene oligomers containing up to only seven rings
have also been reported. See: (a) Miyata, Y.; Nishinaga, T.; Komatsu, K.
J. Org. Chem. 2005, 70, 1147. (b) Miyata, Y.; Terayama, M.; Minari, T.;
Nishinaga, T.; Nemoto, T.; Isoda, S.; Komatsu, K. Chem.sAsian J. 2007,
2, 1492.
(8) (a) Gandini, A.; Belgacem, M. N. In Monomers, Polymers and Composites
from Renewable Resources; Belgacem, M. N., Gandini, A., Eds.: Elsevier:
Oxford, U.K., 2008; Chapter 6. (b) Okada, M.; Tachikawa, K.; Aoi, K.
J. Appl. Polym. Sci. 1999, 74, 3342. (c) Gandini, A. Macromolecules 2008,
41, 9491. (d) Binder, J. B.; Ronald, R. T. J. Am. Chem. Soc. 2009, 131,
1979.
(9) The photophysical properties of 2F-4F have been studied in detail. See:
de Melo, J. S.; Elisei, F.; Gartner, C.; Aloisi, G. G.; Becker, R. S. J. Phys.
Chem. A 2000, 104, 6907.
(10) A thorough comparison of the series of oligothiophenes, furan-thiophene
oligomers, and short oligofurans is given in ref 7.
(11) For recent computational work on oligofurans and comparisons with
oligothiophenes and oligopyrroles, see: (a) Hutchison, G. R.; Ratner, M. A.;
Marks, T. J. J. Phys. Chem. B 2005, 109, 3126. (b) Hutchison, G. R.; Ratner,
M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 16866. (c) Hutchison,
G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 2339.
(12) Ishida, H.; Yui, K.; Aso, Y.; Otsubo, T.; Ogura, F. Bull. Chem. Soc. Jpn.
1990, 63, 2828.
(13) (a) Gollnick, K.; Griesbeck, A. Tetrahedron 1985, 41, 2057. (b) Politis,
J. K.; Nemes, J. C.; Curtis, M. D. J. Am. Chem. Soc. 2001, 123, 2537.
(14) Previous work on alternating furan-thiophene oligomers has shown them
to have greater solubility than the corresponding thiophenes (see ref 7).
(15) The X-ray structures of 3F and 4F are reported in the SI.
(16) Horowitz, G.; Bachet, B.; Yassar, A.; Lang, P.; Demanze, F.; Fave, J. L.;
Garnier, F. Chem. Mater. 1995, 7, 1337.
(17) Holmes, D.; Kumaraswamy, S.; Matzger, A. J.; Vollhardt, K. P. C.
Chem.sEur. J. 1999, 5, 3399.
(18) X-ray structures of alternating furan-thiophene oligomers containing up
to five heterocyclic rings have been reported (see ref 7).
(19) (a) Campione, M.; Tavazzi, S.; Moret, M.; Porzio, W. J. Appl. Phys. 2007,
101, 083512. (b) Van Bolhuis, F.; Wynberg, H.; Havinga, E. E.; Meijer,
E. W.; Staring, E. G. J. Synth. Met. 1989, 30, 381.
Acknowledgment. We thank Dr. Linda J. W. Shimon and Dr.
Gregory Leitus for X-ray analysis, Elijah Shirman for his help with
fluorescence measurements, Ran Vardimon and Natasha Zamo-
chink for their help with calculations. We thank Profs. Igor F.
Perepichka (University of Central Lancashire) and Milko E. van
der Boom (Weizmann Institute) for useful discussions. We thank
the MINERVA Foundation and the Helen and Martin Kimmel
Center for Molecular Design for financial support. M.B. is the
incumbent of the Recanati career development chair, a member ad
personam of the Lise Meitner-Minerva Center for Computational
Quantum Chemistry, and acknowledges DuPont for a Young
Professor Award.
(20) Becker, R. S.; Seixas de Melo, J.; Macu¨anita, A. L.; Elisei, F. J. Phys.
Chem. 1996, 100, 18683.
(21) Coumarine 30 in MeCN (λabs ) 403 nm, λem ) 480 nm, Φf ) 0.67) was
used as a reference for Φf measurements (see: Jones, G.; Jackson, W. R.;
Choi, C.; Bergmark, W. R. J. Phys. Chem. 1985, 89, 294). Under these
conditions, Φf of 4F is 0.80. If 4T were used as the standard, as in ref 9,
then Φf of 4F would be 0.82, and the quantum yields of all the oligofurans
in Table 1 would increase by ∼2%.
(22) All of the calculations were performed at the B3LYP/6-31G(d) level of
theory using the Gaussian 03 program. See the SI for details.
(23) Zade, S. S.; Bendikov, M. Chem.sEur. J. 2007, 13, 3688.
(24) Zade, S. S.; Zamoshchik, N.; Bendikov, M. Chem.sEur. J. 2009, 15, 8613.
(25) We note that oxidation potentials obtained using DPV (Table 1 and Figure
S3 in the SI) are within 0.06 V of the values obtained using CV (except
for 3F, where the difference is 0.12 V).
(26) Glenis, S.; Benz, M.; Legoff, E.; Schindler, J. L.; Kannewurf, C. R.;
Kanatzidis, M. G. J. Am. Chem. Soc. 1993, 115, 12519.
(27) Zade, S. S.; Bendikov, M. Org. Lett. 2006, 8, 5243.
Supporting Information Available: Experimental procedures;
spectral data; X-ray structural data (CIF) for 3F, 4F, and 6F; and details
JA9093346
9
2150 J. AM. CHEM. SOC. VOL. 132, NO. 7, 2010