2830
B. Machura et al. / Polyhedron 28 (2009) 2821–2830
[18] B. Machura, M. Jaworska, R. Kruszynski, Polyhedron 23 (2004) 1819.
[19] H. Chermette, Coord. Chem. Rev. 178–180 (1998) 699.
[20] M.C. Aragoni, M. Arca, T. Cassano, C. Denotti, F.A. Devillanova, F. Isaia, V.
Lippolis, D. Natali, L. Niti, M. Sampietro, R. Tommasi, G. Verani, Inorg. Chem.
Commun. 5 (2002) 869.
[21] P. Romaniello, F. Lelj, Chem. Phys. Lett. 372 (2003) 51.
[22] P. Norman, P. Cronstrand, J. Ericsson, Chem. Phys. 285 (2002) 207.
[23] G. Rouschias, G. Wilkinson, J. Chem. Soc. A (1966) 465.
[24] (a) CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.29.2.;
(b) STOE & Cie, X-RED, Version 1.18, STOE & Cie GmbH, Darmstadt, Germany,
1999.
[25] G.M. Sheldrick, Acta Cryst. A 46 (1990) 467.
[26] G.M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures,
University of Göttingen, Germany, 1997.
[27] G.M. Sheldrick, SHELXTL: Release 4.1 for Siemens Crystallographic Research
Systems, 1990.
[28] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, GAUSSIAN-03, Revision D.01, Gaussian, Inc., Wallingford, CT, 2004.
[29] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
UV–vis spectrum was calculated to ꢄ270 nm. Thus the shortest
wavelength experimental band of 2 is not assigned to the calcu-
lated transitions; some intraligand and interligand transitions are
expected to be found at higher energies in the calculations for 2.
3.9. [ReOBr3(dpk-OH)]
The two longest wavelength experimental bands of 3 originate
in the HOMOꢁLUMO and HOMOꢁLUMO+1 transitions, respec-
tively. As can be seen from the Fig. 7, the LUMO and LUMO+1 orbi-
tals are mainly formed from rhenium d atomic orbitals, the HOMO
orbital is delocalized among rhenium ion and bromide orbitals.
Accordingly, the transitions assigned to the experimental bands at
794.1 and 623.6 nm can be seen as mixed bromide ? Re (Ligand-
Metal Charge Transfer; LMCT) and d ? d (Ligand Field; LF) transitions.
The experimental absorption band at 367.4 nm can be assigned
to Ligand-Metal Charge Transfer transitions occurring from the bro-
mide, oxo, and dpk-OH ligands to d rhenium orbitals.
The absorption bands at 278.1 and 204.0 nm result mainly from
Ligand-Ligand Charge Transfer and interligand (IL) transitions, but
participation of Ligand-Metal Charge Transfer into this band is also
confirmed by the calculations.
Supplementary data
[30] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[31] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 299.
[32] K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 97 (1997)
119.
[33] W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56 (1972) 2257.
[34] P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28 (1973) 213.
[35] M.M. Francl, W.J. Petro, W.J. Hehre, J.S. Binkley, M.S. Gordon, D.J. DeFrees, J.A.
Pople, J. Chem. Phys. 77 (1982) 3654.
[36] T. Clark, J. Chandrasekhar, P.V.R. Schleyer, J. Comp. Chem. 4 (1983) 294.
[37] R. Krishnam, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72 (1980) 650.
[38] P.M.W. Gill, B.G. Johnson, J.A. Pople, M.J. Frisch, Chem. Phys. Lett. 197 (1992)
499.
CCDC 731661, 731662 and 731663 contain the supplementary
crystallographic data for C29H23Cl3N2OPRe, C29H23Cl3N2O2PRe and
C33H27Br4N6O5Re. These data can be obtained free of charge via
Cambridge Crystallographic Data Center, 12 Union Road, Cam-
bridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:
[39] M.T. Cances, B. Mennucci, J. Tomasi, J. Chem. Phys. 107 (1997) 3032.
[40] M. Cossi, V. Barone, B. Mennucci, J. Tomasi, Chem. Phys. Lett. 286 (1998) 253.
[41] B. Mennucci, J. Tomasi, J. Chem. Phys. 106 (1997) 5151.
[42] M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 117 (2002) 43.
[43] E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO (Version 3.1). E.
Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899.
[44] E. König, Magnetic Properties of Coordination and Organometallic Transition
Metal Compounds, Springer, Berlin, 1966.
[45] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, fourth ed., Wiley-Interscience, New York, 1986.
[46] G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer-
Verlag, 1994.
Acknowledgements
The GAUSSIAN-03 calculations were carried out in the Wrocław
Center for Networking and Supercomputing, WCSS, Wrocław, Po-
96.
References
[47] G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and
Biology, Oxford University Press, 1999.
[48] W. Kaim, B. Schwederski, O. Heilmann, F.M. Hornung, Coord. Chem. Rev. 182
(1999) 323.
[1] U. Abram, in: J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination
Chemistry, second ed., vol. 5, Elsevier, p. 271 (Chapter 5.3).
[2] J.R. Dilworth, S.J. Parrott, Chem. Soc. Rev. 27 (1998) 43.
[3] P. Blower, Dalton Trans. (2006) 1705.
[49] F.H. Allen, Acta Crystallogr. B 58 (2002) 380.
[4] R.L. Richards, Coord. Chem. Rev. 154 (1996) 83.
[50] L.E. Helberg, S.D. Orth, M. Sabat, W.D. Harman, Inorg. Chem. 35 (1996) 5584.
[51] J. Rall, F. Weingart, D.M. Ho, M.J. Heeg, F. Tisato, E. Deutsch, Inorg. Chem. 33
(1994) 3442.
[52] J.M. Mayer, Inorg. Chem. 27 (1988) 3899.
[53] S.R. Fletcher, A.C. Skapski, J. Chem. Soc., Dalton (1972) 1073.
[54] J.E. Fergusson, Coord. Chem. Rev. 1 (1966) 459.
[55] B.N. Figgis, J. Lewis, Prog. Inorg. Chem. 6 (1964) 37.
[56] B.N. Figgis, Introduction to Ligand Field, Wiley-Interscience, New York, 1966.
p. 248.
[57] J. Chatt, G.J. Leigh, D.M.P. Mingos, E.W. Randall, D. Shaw, J. Chem. Soc., Chem.
Commun. (1968) 419.
[58] H.P. Gunz, G.J. Leigh, J. Chem. Soc. (1971) 2229.
[5] M.D. Fryzuk, S.A. Johnson, Coord. Chem. Rev. 200–202 (2000) 379.
[6] A.J.L. Pombeiro, M.F.C. Guedes da Silva, R.A. Michelin, Coord. Chem. Rev. 218
(2001) 43.
[7] F.E. Kühn, A. Scherbaum, W.A. Herrmann, J. Organomet. Chem. 689 (2004)
4149.
[8] G.S. Owens, J. Arias, M.M. Abu-Omar, Catal. Today 55 (2000) 317.
[9] A.M. Kirillov, M. Haukka, M.V. Kirillova, A.J.L. Pombeiro, Adv. Synth. Catal. 347
(2005) 1435.
[10] A. Deloffre, S. Halut, L. Salles, J.-M. Brégeault, J.R. Gregorio, B. Denise, H. Rudler,
J. Chem. Soc., Dalton Trans. (1999) 2897.
[11] K.N. Crowder, S.J. Garcia, R.L. Burr, J.M. North, M.H. Wilson, B.L. Conley, P.E.
Fanwick, P.S. White, K.D. Sienerth, R.M. Granger, Inorg. Chem. 43 (2004) 72.
[12] M. Toyama, M. Nakahara, N. Nagao, Bull. Chem. Soc. Jpn. 80 (2007) 937.
[13] C. Godard, S.B. Duckett, S. Parsons, R.N. Perutz, Chem. Commun. (2003) 2332.
[14] J. Grewe, A. Hagenbach, B. Stromburg, R. Alberto, E. Vazquez-Lopez, U. Abram,
Z. Anorg. Allg. Chem. 629 (2003) 303.
[59] B. Coutinho, J.R. Dilworth, P. Jobanputra, R.M. Thompson, S. Schmidt, J. Strähle,
C.M. Archer, J. Chem. Soc., Dalton Trans. (1995) 1663.
[60] M. Hirsch-Kuchma, T. Nicholson, A. Davison, W.M. Davis, A.G. Jones, Inorg.
Chem. 36 (1997) 3237.
[61] C.A. McConnachie, E.I. Stiefel, Inorg. Chem. 36 (1997) 6144.
[62] C. Pearson, A.L. Beauchamp, Can. J. Chem. 75 (1997) 220.
[63] A. Earnshaw, B.N. Figgis, J. Lewis, R.D. Peacock, J. Chem. Soc. (1961) 3132.
[64] M.L. Kuznetsov, A.J.L. Pombeiro, J. Chem. Soc., Dalton Trans. (2003) 738.
[15] G. Bandoli, A. Dolmella, T.I.A. Gerber, J.G.H. du Preez, H.J. Kemp, Inorg. Chim.
Acta 217 (1994) 141.
[16] G. Rouschias, G. Wilkinson, J. Chem. Soc. A (1967) 993.
[17] P. Ghosh, A. Pramanik, N. Bag, A. Chakravorty, J. Chem. Soc., Dalton Trans.
(1992) 1883.