C. A. van Walree et al.
obtained. The product was soluble in chloroform and partially soluble in
dichloromethane and THF. H NMR: d = 6.95 (br, 1H; aromatic H),
[6] A. Shik, S. Yu, E. Johnson, H. Ruda, E. H. Sargent, Solid-State Elec-
tron. 2002, 46, 61.
1
6
2
(
.21 (s, ca. 0.4H; =CꢀH), 6.11 (s, ca. 0.6H; =CꢀH), 2.80 (br, 2H),
[7] M. C. Schlamp, X. Peng, A. P. Alivisatos, J. Appl. Phys. 1997, 82,
5837.
[8] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature 1994, 370, 354.
[9] S. Coe, W.-K. Woo, M. Bawendi, V. Bulovic, Nature 2002, 420, 800.
[10] S. Chaudhary, M. Ozkan, W. C. W. Chan, Appl. Phys. Lett. 2004, 84,
2925.
[11] W. W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 2003, 15, 2854.
[12] S. F. Wuister, F. van Driel, A. Meijerink, Phys. Chem. Chem. Phys.
2003, 5, 1253.
[13] D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase,
H. Weller, J. Phys. Chem. B 2001, 105, 2260.
[14] P. Reiss, J. Bleuse, A. Pron, Nano Lett. 2002, 2, 781.
[15] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993,
115, 8706.
[16] E. Kucur, J. Friegler, G. A. Urban, T. Nann, J. Chem. Phys. 2003,
119, 2333.
[17] L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov,
G. D. Scholes, E. H. Sargent, Appl. Phys. Lett. 2003, 82, 2895.
[18] A. A. Bol, A. Meijerink, J. Phys. Chem. B 2001, 105, 10203.
[19] A. A. Bol, A. Meijerink, J. Phys. Chem. B 2001, 105, 10197.
1
3
.63 ppm (br, 6H); C NMR: d = 119.1, 118.8, 38.7, 32.1, 30.8, 30.2 ppm
1
3
because of a poor signal-to-noise ratio the backbone C NMR signals
could not be detected); IR: n˜ = 3053, 2937, 2900, 2824, 1647, 1588, 1550,
1
8
C
496, 1423, 1321, 1300, 1287, 1267, 1225, 1183, 1119, 1052, 1015, 966, 936,
ꢀ
1
47, 828, 771, 736, 721, 691, 653 cm ; elemental analysis calcd (%) for
(194.3): C 61.81, H 5.19, S 33.00; found: C 61.80, H 5.10, S
10
H
10
S
2
3
3.11.
CdTe quantum dots: These were synthesized in a glove-box under argon
[
12,20]
by a modification of the procedure reported by Wuister et al.
Te
powder (<250 mm particle size, 0.16 g, 1.3 mmol) was added to a solution
of dimethylcadmium (0.26 g, 1.8 mmol) in TOP (20 mL) and DDA (15 g),
heated to 508C. The reaction mixture was stirred at 1808C and the reac-
tion progress was monitored by measuring the fluorescence of samples
consisting of a few drops of reaction mixture diluted in toluene (10 mL)
under UV irradiation (365 nm). The synthesis was stopped at the
moment that a sample taken from the reaction mixture showed bright
orange to red fluorescence. The quantum dots had an average diameter
of 4.0 nm, as estimated from the first absorption maximum of the CdTe
[
11]
quantum dots, which is near 620 nm.
[
20] S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, C. de Mello
Complexation experiments: The maximum coverage of CdTe quantum
dots by poly(4) was estimated from the area occupied by a repeating unit
Donegµ, Nano Lett. 2003, 3, 503.
2
[63]
[21] J. Li, X. Hong, Y. Liu, D. Li, Y. A. Wang, J. Li, Y. Bai, T. Li, Adv.
Mater. 2005, 17, 163.
(
27.7 as estimated from an MM2 calculation in Chem3D Pro ) and
the area of a completely stripped quantum dot of known radius. The
number of quantum dots in a sample was calculated under the assump-
[
22] H. Bao, Y. Gong, Z. Li, M. Gao, Chem. Mater. 2004, 16, 3853.
2
ꢀ
2+
[23] A. A. Bol, R. van Beek, A. Meijerink, Chem. Mater. 2002, 14, 1121.
[24] S. F. Wuister, A. Meijerink, J. Lumin. 2003, 102–103, 338.
[25] K. Prabakar, S. K. Narayandass, D. Mangalaraj, Physica B 2003, 328,
355.
tion that a quantum dot consists of a Te lattice with the Cd ions occu-
2
ꢀ
[64]
pying the voids. This is justified by the ionic radius of Te (2.11
being much larger than that of Cd (0.97 ). Thus, from the number
of Te ions fitting in a quantum dot of known radius and the amount of
CdTe quantum dot material used (by taking a given amount from a dis-
persion of known concentration), the numbers of quantum dots, and of
CdTe units, were obtained.
)
2
+
[64]
2
ꢀ
[
26] V. I. Levchenko, V. N. Yakimovich, L. I. Postnova, V. I. Konstanti-
nov, V. P. Mikhailov, N. V. Kuleshov, J. Cryst. Growth 1999, 198/199,
9
80.
[
[
27] N. Gaponik, D. V. Talapin, A. L. Rogach, A. Eychmüller, H. Weller,
Nano Lett. 2002, 2, 803.
28] N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchen-
ko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B 2002,
Before exposure to poly(4), an aliquot of CdTe quantum dots (8 mL of a
dispersion in TOP/DDA with a CdTe unit concentration of 0.036m) was
precipitated into methanol (70 mL). When the precipitate had settled,
the supernatant was decanted. The precipitate was dispersed in chloro-
form (8 mL) and again precipitated into methanol (70 mL). After centri-
fugation (2400 rpm for 15 min) the supernatant was decanted and the
precipitate was dispersed in chloroform (8 mL). For photophysical inves-
tigation of a CdTe/poly(4) mixture, a system was prepared containing
CdTe quantum dots and poly(4) in a ratio of 9:1 (mol CdTe units per mol
poly(4) repeating units). This implies that the occupation of the quantum
dot surface by poly(4) was approximately 40% at most. It should be real-
ized that the actual coverage by poly(4) was less than the maximum,
since TOP remained attached to the quantum dot surface. Mixed systems
were stored in an inert atmosphere for at least 2 h before measurement
to allow full equilibration of the complexation process.
1
06, 7177.
29] T. Tsuruoka, K. Akamatsu, H. Nawafune, Langmuir 2004, 20,
1169.
30] A. van Dijken, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W.
Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stçssel, K. Brunner,
J. Am. Chem. Soc. 2004, 126, 7718.
[
[
1
[
[
[
31] J. Liu, E. N. Kadnikova, Y. Liu, M. D. McGehee, J. M. J. FrØchet, J.
Am. Chem. Soc. 2004, 126, 9486.
32] J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, J. M. J. FrØchet, J. Am.
Chem. Soc. 2004, 126, 6550.
33] E. P. A. M. Bakkers, A. W. Marsman, L. W. Jenneskens, D. Vanmae-
kelbergh, Angew. Chem. 2000, 112, 2385; Angew. Chem. Int. Ed.
2
000, 39, 2297.
[
34] Y.-V. Kervennic, J. M. Thijssen, D. Vanmaekelbergh, R. Dabirian,
L. W. Jenneskens, C. A. van Walree, H. S. J. van der Zant, Angew.
Chem. 2006, 118, 2602; Angew. Chem. Int. Ed. 2006, 45, 2540.
35] M. Poot, E. Osorio, K. OꢁNeill, J. M. Thijssen, D. Vanmaekelbergh,
C. A. van Walree, L. W. Jenneskens, H. S. J. van der Zant, Nano Lett.
2006, 6, 1031.
Acknowledgements
[
The authors gratefully acknowledge the Netherlands Organization for
Scientific Research, Priority Program of Materials (NWO-PPM), for fi-
nancial support of this work.
[36] A. W. Marsman, R. W. A. Havenith, S. Bethke, L. W. Jenneskens, R.
Gleiter, J. H. van Lenthe, Eur. J. Org. Chem. 2000, 2629.
[
37] A. W. Marsman, R. W. A. Havenith, S. Bethke, L. W. Jenneskens, R.
Gleiter, J. H. van Lenthe, M. Lutz, A. L. Spek, J. Org. Chem. 2000,
65, 4584.
[
[
1] D. S. Ginger, N. C. Greenham, Phys. Rev. B 1999, 59, 10622.
2] N. C. Greenham, X. Peng, A. P. Alivisatos, Phys. Rev. B 1996, 54,
1
7628.
[38] T. Rajh, O. I. Micic, A. J. Nozik, J. Phys. Chem. 1993, 97, 11999.
[39] F. J. Hoogesteger, R. W. A. Havenith, J. W. Zwikker, L. W. Jennesk-
ens, L. W. Kooijman, N. Veldman, A. L. Spek, J. Org. Chem. 1995,
60, 4375.
[
[
3] N. C. Greenham, X. Peng, A. P. Alivisatos, Synth. Met. 1997, 84, 545.
4] B. S. Ong, Y. Wu, P. Liu, S. Gardner, J. Am. Chem. Soc. 2004, 126,
3
378.
[
5] K. Yoshino, Y. Kawagishi, S. Tatsuhara, H. Kajii, S. Lee, M. Ozaki,
Z. V. Vardeny, A. A. Zakhidov, Superlattices Microstruct. 1999, 25,
[40] Compound 4 was also polymerized in the presence of CdTe quan-
tum dots. However, as indicated by photophysical studies, the quan-
tum dots did not survive the polymerization. CdTe quantum dots
3
25.
8082
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2006, 12, 8075 – 8083