Page 5 of 6
Journal of the American Chemical Society
Template/Metal-Exchange Method: An Epoxidation Catalyst with
(10) Guo, Mian.; Dong, Hang.; Li, Jie.; Cheng, Ben.; Huang, Y.-Q.; Feng,
Y.-Q.; Lei, A. Spectroscopic Observation of Iodosylarene Metallopor-
phyrin Adducts and Manganese(V)-Oxo Porphyrin Species in a Cy-
tochrome P450 Analogue. Nat. Commun. 2012, 3, 1190.
1
2
3
Enhanced Reactivity. J. Am. Chem. Soc. 2008, 130, 4945. (e) Liu, W.;
Groves, J. T. Manganese Catalyzed C-H Halogenation. Acc. Chem.
Res. 2015, 48, 1727.
4
5
6
7
8
9
(5) (a) McEvoy, J. P.; Brudvig, G. W. Water-Splitting Chemistry of Pho-
tosystem II. Chem. Rev. 2006, 106, 4455. (b) Pecoraro, V. L.; Hsieh,
W.-Y. In Search of Elusive High-Valent Manganese Species That
Evaluate Mechanisms of Photosynthetic Water Oxidation. Inorg.
Chem. 2008, 47, 1765. (c) Yano, J.; Yachandra, V. Mn4Ca Cluster in
Photosynthesis: Where and How Water is Oxidized to Dioxygen.
Chem. Rev. 2014, 114, 4175. (d) Suga, M.; Akita, F.; Hirata, K.; Ueno,
G.; Murakami, H.; Nakajima, Y.; Shimizu, T.; Yamashita, K.; Yama-
moto, M.; Ago, H.; Shen, J.-R. Native Structure of Photosystem II at
1.95 Å Resolution Viewed by Femtosecond X-Ray Pulses. Nature
2015, 517, 99. (e) Zhang, C.; Chen, C.; Dong, H.; Shen, J.-R.; Dau, H.;
Zhao, J. A Synthetic Mn4Ca-Cluster Mimicking the Oxygen-Evolving
Center of Photosynthesis. Science 2015, 348, 690.
(11) (a) Lennartson, A.; McKenzie, C. J. An iron(III) Iodosylbenzene
Complex: A Masked Non-Heme FeVO. Angew. Chem. Int. Ed. 2012
,
51, 6767. (b) Wang, C.; Kurahashi, T.; Fujii, H. Structure and Reac-
tivity of an Iodosylarene Adduct of a Manganese(IV)-Salen Complex.
Angew. Chem. Int. Ed. 2012, 124, 7929. (c) Wang, C.; Kurahashi, T.;
Inomata, K.; Hada, M.; Fujii, H. Oxygen-Atom Transfer from Iodo-
sylarene Adducts of a Manganese(IV) Salen Complex: Effect of
Arenes and Anions on I(III) of the Coordinated Iodosylarene. Inorg.
Chem. 2013, 52, 9557. (d) Wegeberg, C.; Frankaer, C. G.; McKenzie,
C. J. Reduction of Hypervalent Iodine by Coordination to Iron(III)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
and the Crystal Structures of PhIO and PhIO2. Dalton Trans. 2016
,
45, 17714. (e) de Sousa, D. P.; Wegeberg, C.; Vad, M. S.; Mørup, S.;
Frandsen, C.; Donald, W. A.; McKenzie, C. J. Halogen-Bonding-
Assisted Iodosylbenzene Activation by a Homogenous Iron Catalyst.
Chem. Eur. J. 2016, 22, 3810. (f) Hill, E. A.; Kelty, M. L.; Filatov, A. S.;
Anderson, J. S. Isolable Iodosylarene and Iodoxyarene Adducts of Co
and their O-Atom Transfer and C-H Activation Reactivity. Chem. Sci.
2018, 9. 4493.
(6) (a) Hypervalent Iodine Chemistry: Modern Developments in Organ-
ic Synthesis; Wirth, T., Ed.; Springer-Verlag: Berlin, 2003. (b) Costas,
M. Selective C-H Oxidation Catalyzed by Metalloporphyrins. Coord.
Chem. Rev. 2011, 255, 2912. (c) Yoshimura, A.; Zhdankin, V. V. Ad-
vances in Synthetic Applications of Hypervalent Iodine Compounds.
Chem. Rev. 2016, 116, 3328.
(12) Hong, S.; Wang, B.; Seo, M. S.; Lee, Y.-M.; Kim, M. J.; Kim, H. R.;
Ogura, T.; Garcia-Serres, R.; Clemancey, M.; Latour, J.-M.; Nam, W.
Highly Reactive Nonheme Iron(III) Iodosylarene Complexes in Al-
kane Hydroxylation and Sulfoxidation Reactions. Angew. Chem. Int.
Ed. 2014, 53, 6388.
(7) (a) Groves, J. T.; Nemo, T. E.; Myers, R. S. Hydroxylation and Epoxi-
dation Catalyzed by Iron-Porphine Complexes. Oxygen Transfer
from Iodosylbenzene. J. Am. Chem. Soc. 1979, 101, 1032. (b) Groves,
J. T.; Nemo, T. E. Epoxidation Reactions Catalyzed by Iron Porphy-
rins. Oxygen Transfer from Iodosylbenzene. J. Am. Chem. Soc. 1983
,
(13) (a) Jeong, D.; Yan, J. J.; Noh, H.; Hedman, B.; Hodgson, K. O.; Solo-
mon, E. I.; Cho, J. Oxidation of Naphthalene with a Manganese(IV)
Bis(hydroxo) Complex in the Presence of Acid. Angew. Chem. Int.
Ed. 2018, 57, 7764. (b) Sawant, S. C.; Wu, X.; Cho, J.; Cho, K.-B.;
Kim, S. H.; Seo, M. S.; Lee, Y.-M.; Kubo, M.; Ogura, T.; Shaik, S.;
Nam, W. Water as an Oxygen Source: Synthesis, Characterization,
and Reactivity Studies of a Mononuclear Nonheme Manganese(IV)
Oxo Complex. Angew. Chem. Int. Ed. 2010, 49, 8190.
105, 5786. (c) Collman, J. P.; Chien, A. S.; Eberspacher, T. A.; Brau-
man, J. I. Multiple Active Oxidants in Cytochrome P-450 Model Oxi-
dations. J. Am. Chem. Soc. 2000, 122, 11098. (d) Collman, J. P.; Zeng,
L.; Decreau, R. A. Multiple Active Oxidants in Competitive Epoxida-
tions Catalyzed by Porphyrins and Corroles. Chem. Commun. 2003
,
2974. (e) Goldberg, D. P. Corrolazines: New Frontiers in High-
Valent Metalloporphyrinoid Stability and Reactivity. Acc. Chem. Res.
2007, 40, 626.
(14) Evans, D. F. The determination of the Paramagnetic Susceptibility of
Substance in Solution by Nuclear Magnetic Resonance. J. Chem. Soc.
1959, 2003.
(8) (a) Nam, W.; Valentine, J. S. Zinc (II) Complexes and Aluminium(III)
Porphyrin Complexes Catalyze the Epoxidation of Olefin by Iodo-
sylbenzene. J. Am. Chem. Soc. 1990, 112, 4977. (b) Yang, Y.;
Diederich, F.; Valentine, J. S. Reaction of Cyclohexene with Iodo-
sylbenzene Catalyzed by Non-Porphyrin Complexes of Iron(III) and
Aluminium(III). Newly Discorvered Products and a New Mechanis-
tic Proposal. J. Am. Chem. Soc. 1990, 112, 7826.
(15) (a) Lam, W. W. Y.; Man, W.-L.; Lau, T.-C. Mechanisms of Oxidation
by Trans-Dioxoruthenium(VI) Complexes Containing Macrocyclic
Tertiary Amine Ligands. Coord. Chem. Rev. 2007, 251, 2238. (b)
Roth, J. P.; Mayer, J. M. Hydrogen Transfer Reactivity of a Ferric Bi-
imidazoline Complex That Models the Activity of Lipoxygenase En-
zymes. Inorg. Chem. 1999, 38, 2760.
(9) Nam, W.; Jin, S. W.; Ryu, J. Y.; Kim, C. Anionic Ligand Effect on the
Nature of Epoxidizing Intermediates in Iron Porphyrin Complex-
Catalyzed Epoxidation Reactions. Inorg. Chem. 2002, 41, 3647.
5
ACS Paragon Plus Environment