Paper
RSC Advances
light. Next, the electron travels through the conduction band of 12 B. Karimi, M. Ghoreishi-Nezhad and J. H. Clark, Org. Lett.,
PbCrO4 to react with O2, thereby forming O2cꢂ. The S-centered
2005, 7, 625–628.
free-radical cation prefers to react with O2cꢂ formed at the 13 R. Noyori, M. Aoki and K. Sato, Chem. Commun., 2003, 1977–
conduction band of PbCrO4, allowing the evolution of sulde 1986.
peroxide. In the protic solvent CH3OH, the nal methyl phenyl 14 K. Sato, M. Aoki and R. Noyori, Science, 1998, 281, 1646–
sulfoxide is formed, accompanied by the side products of 1647.
HCHO and H2O. At this stage, this proposed mechanism lacks 15 K. Sato, M. Hyodo, M. Aoki, X.-Q. Zheng and R. Noyori,
direct evidence (Scheme 1).
Tetrahedron, 2001, 57, 2469–2476.
16 P. Kowalski, K. Mitka, K. Ossowska and Z. Kolarska,
Tetrahedron, 2005, 61, 1933–1953.
17 K. Kaczorowska, Z. Kolarska, K. Mitka and P. Kowalski,
Tetrahedron, 2005, 61, 8315–8327.
Conclusions
In conclusion, PbCrO4 nanoparticles were successfully synthe-
sized via a green method in the presence of gum of ferula assa- 18 B. M. Choudary, B. Bharathi, C. V. Reddy and M. L. Kantam,
foetida as a novel nanocatalyst. SEM, TEM, XRD and EDX have J. Chem. Soc., Perkin Trans. 1, 2002, 2069–2074.
been used to characterize the prepared nanocatalyst. Through 19 K. Jeyakumar, R. D. Chakravarthy and D. K. Chand, Catal.
the photocatalysis of PbCrO4 and TEA, the visible-light-induced Commun., 2009, 10, 1948–1951.
selective oxidation of sulde into sulfoxide with O2 was 20 C. M. Gordon, Appl. Catal., A, 2001, 222, 101–117.
successfully conducted in CH3OH. The interaction between 21 S. Rostamnia, RSC Adv., 2015, 5, 97044–97065.
PbCrO4 and TEA gives rise to visible-light activity in the reaction 22 B. Zhou, J. Song, Z. Zhang, Z. Jiang, P. Zhang and B. Han,
system. This separable solid nanocatalyst can be prepared by
a very simple procedure using inexpensive and commercially 23 W. Huang, B. C. Ma, H. Lu, R. Li, L. Wang, K. Landfester and
available precursors, and the catalyst can be reused for six cycles K. Zhang, ACS Catal., 2017, 7, 5438–5442.
without any loss in its activity as well as composition. Thus, the 24 X. Lang, J. Zhao and X. Chen, Angew. Chem., Int. Ed., 2016,
Green Chem., 2017, 19, 1075–1081.
procedure serves as a valuable alternative in the selective
synthesis of sulfoxides.
55, 4697–4700.
25 X. Lang, W. Hao, W. R. Leow, S. Li, J. Zhao and X. Chen,
Chem. Sci., 2015, 6, 5000–5005.
26 X. Lang, W. R. Leow, J. Zhao and X. Chen, Chem. Sci., 2015, 6,
1075–1082.
Conflicts of interest
There are no conicts to declare.
27 B. Zhang, J. Li, B. Zhang, R. Chong, R. Li, B. Yuan, S.-M. Lu
and C. Li, J. Catal., 2015, 332, 95–100.
28 S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley,
L. J. Geerligs and C. Dekker, Nature, 1997, 386, 474–476.
Notes and references
1 Y. C. Ling, G. M. Wang, J. Reddy, C. C. Wang, J. Z. Zhang and 29 J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber,
Y. Li, Angew. Chem., Int. Ed., 2012, 51, 4074–4079.
Science, 2001, 293, 1455–1457.
2 N. Dimitratos, J. A. Lopez-Sanchez and G. J. Hutchings, 30 H. Kind, H. Yan, B. Messer, M. Law and P. Yang, Adv. Mater.,
Chem. Sci., 2012, 3, 20–44.
2002, 14, 158–160.
3 M. Bordeaux, A. Galarneau and J. Drone, Angew. Chem., 2012, 31 J. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res., 1999,
124, 10870–10881. 32, 435–445.
4 S. R. Zhang, L. Nguyen, Y. Zhu, S. H. Zhan, C. K. Tsung and 32 X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher,
F. Tao, Acc. Chem. Res., 2013, 46, 1731–1739. A. Kadavanich and A. P. Alivisators, Nature, 2000, 404, 59–61.
5 R. Blume, M. Hvecker, S. Zafeiratos, D. Techner, 33 K. S. Knight, Mineral. Mag., 2000, 64, 291–300.
A. KnopGericke, R. Schlgl, L. Gregoratti, A. Barinov and 34 S. Vaucher, M. Li and S. Mann, Angew. Chem., Int. Ed., 2000,
M. Kiskinova, Nanostructured Catalysts: Selective Oxidations,
The Royal Society of Chemistry, 2011, pp. 248–265.
39, 1793–1796.
35 X. L. Hu and Y. J. Zhu, Chem. Lett., 2004, 33, 880–881.
¨
6 J. Piera and J.-E. Backvall, Angew. Chem., Int. Ed., 2008, 47, 36 L. J. H. Erkens, H. Hamers, R. J. M. Hermans, E. Claeys and
3506–3523. M. Bijnens, Surf. Coat. Int., Part B, 2001, 84, 169–176.
7 F. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, 37 K. A. Wishah and M. M. Abdul-Gader, Appl. Phys. A, 1998, 66,
J. Klankermayer and W. Leitner, Angew. Chem., 2010, 122,
5642–5646.
8 Z. Guo, B. Liu, Q. Zhang, W. Deng, Y. Wang and Y. Yang,
Chem. Soc. Rev., 2014, 43, 3480–3524.
9 T. Matsumoto, M. Ueno, N. Wang and S. Kobayashi, Chem.–
Asian J., 2008, 3, 196–214.
10 P. S. Kulkarni and C. A. M. Afonso, Green Chem., 2010, 12,
1139–1149.
229–234.
38 S. M. Sadeghzadeh, Appl. Organomet. Chem., 2016, 30, 835–
842.
39 M. A. Nasseri and S. M. Sadeghzadeh, J. Iran. Chem. Soc.,
2014, 11, 27–33.
40 S. M. Sadeghzadeh, Microporous Mesoporous Mater., 2016,
234, 310–316.
41 Z. Chai, T.-T. Zeng, Q. Li, L.-Q. Lu, W.-J. Xiao and D. Xu, J.
Am. Chem. Soc., 2016, 138, 10128–10131.
´
´
11 M. V. Gomez, R. Caballero, E. Vazquez, A. Moreno, A. Hoz
´
´
and A. Dıaz-Ortiz, Green Chem., 2007, 9, 331–336.
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 40934–40940 | 40939