Y. Wang et al. / Journal of Catalysis 273 (2010) 177–181
181
to the same reaction vessel. The reaction was extended for another
Acknowledgments
4 h at 0 °C. It is encouraging that excellent enantioselectivities
were obtained by using the modified procedure in toluene. The
combination of the asymmetric oxidation of the left sulfide and
the slightly kinetic resolution of the in-situ formed sulfoxide in
the latter step with an extra 0.3 equiv of H2O2 made an improve-
ment of the enantioselectivity, while only a tolerant drop in the
yield of methyl phenyl sulfoxide was observed. Compared to the
enantioselectivities (92À94% ee) and the yields (57À62% yield)
obtained from the oxidation of thioanisole in toluene with addition
of 1.2 equiv of H2O2 at once, 5b, 5d and 5e display better enanti-
oselectivities (95À98% ee, Fig. S3) in 51À62% yields when the
modified procedure was adopted (entries 20À22 vs. 26À28
respectively).
We are grateful to the National Natural Science Foundation of
China (Grant No. 20973032), the Program for Changjiang Scholars
and Innovative Research Team in University (IRT0711), and the K
& A Wallenberg Foundation of Sweden for financial support of this
work.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
With the modified procedure, we performed the asymmetric
oxidation of various aryl methyl sulfides with VO(acac)2/5d and /
5e as catalysts. The catalytic results are given in Table 3. The cor-
responding sulfoxides were obtained in satisfactory isolated yields
(55À65%) with excellent enantioselectivities (95À99% ee, Fig. S4).
In general, ligand 5d gave higher yields of sulfoxides than 5e for
the oxidations of all three tested aryl methyl sulfides, while 5d
and 5e afforded similar enantioselectivities for the oxidation of
each aryl methyl sulfide. To the best of our knowledge, these are
the best results reported so far for the asymmetric oxidation of aryl
methyl sulfides in toluene using vanadium catalysts in combination
with chiral Schiff bases, which are comparable to the best results
obtained from such asymmetric oxidation reactions in dichloro-
methane or chloroform [23–25,30,32].
References
[1] M.C. Carreno, Chem. Rev. 95 (1995) 1717.
[2] I. Fernández, N. Khiar, Chem. Rev. 103 (2003) 3651.
[3] H. Pellissier, Tetrahedron 62 (2006) 5559.
[4] J. Legros, J.R. Dehli, C. Bolm, Adv. Synth. Catal. 347 (2005) 19.
[5] Z. Han, J.J. Song, N.K. Yee, Y. Xu, W. Tang, J.T. Reeves, Z. Tan, X. Wang, B. Lu, D.
Krishnamurthy, C.H. Senanayake, Org. Process Res. Dev. 11 (2007) 605.
[6] H. Cotton, T. Elebring, M. Larsson, L. Li, H. Sörensen, S. von Unge, Tetrahedron:
Asymmetry 11 (2000) 3819.
[7] R. Bentley, Chem. Soc. Rev. 34 (2005) 609.
[8] A. Korte, J. Legros, C. Bolm, Synlett. 13 (2004) 2397.
[9] P. Pitchen, H.B. Kagan, Tetrahedron Lett. 25 (1984) 1049.
[10] F. Di Furia, G. Modena, R. Seraglia, Synthesis 4 (1984) 325.
[11] T. Katsuki, Coord. Chem. Rev. 140 (1995) 189.
[12] C. Bolm, Coord. Chem. Rev. 237 (2003) 245.
[13] K. Matsumoto, T. Yamaguchi, T. Katsuki, Chem. Commun. (2008) 1704.
[14] K.P. Bryliakov, E.P. Talsi, Eur. J. Org. Chem. (2008) 3369.
[15] F.A. Davis, J.C. Towson, M.C. Weismiller, S. Lal, P.J. Carroll, J. Am. Chem. Soc.110
(1988) 8477.
[16] F.A. Davis, R.T. Reddy, M.C. Weismiller, J. Am. Chem. Soc. 111 (1989) 5964.
[17] F.A. Davis, R.T. Reddy, W. Han, P.J. Carroll, J. Am. Chem. Soc. 114 (1992) 1428.
[18] P.C. Bulman Page, J.P. Heer, D. Bethell, E.W. Collington, D.M. Andrews, Synlett
(1995) 773.
[19] P.C. Bulman Page, J.P. Heer, D. Bethell, E.W. Collington, D.M. Andrews,
Tetrahedron: Asymmetry 6 (1995) 2911.
[20] P.C. Bulman Page, J.P. Heer, D. Bethell, E.W. Collington, D.M. Andrews, Org.
Synth. 76 (1999) 37.
[21] S. Schoumacker, O. Hamelin, S. Téti, J. Pécaut, M. Fontecave, J. Org. Chem. 70
(2005) 301.
[22] R.E. del Río, B. Wang, S. Achab, L. Bohé, Org. Lett. 9 (2007) 2265.
[23] C. Bolm, F. Bienewald, Angew. Chem. Int. Ed. Engl. 34 (1995) 2640.
[24] J. Legros, C. Bolm, Angew. Chem. Int. Ed. 43 (2004) 4225.
[25] J. Legros, C. Bolm, Chem. Eur. J. 11 (2005) 1086.
[26] N.N. Karpyshev, O.D. Yakovleva, E.P. Talsi, K.P. Bryliakov, O.V. Tolstikova, A.G.
Tolstikov, J. Mol. Catal. A: Chem. 157 (2000) 91.
[27] J. Skarzewski, E. Ostrycharz, R. Siedlecka, Tetrahedron: Asymmetry 10 (1999)
3457.
[28] H. Liu, M. Wang, Y. Wang, R. Yin, W. Tian, L. Sun, Appl. Organometal. Chem. 22
(2008) 253.
[29] A. Gao, M. Wang, D. Wang, L. Zhang, H. Liu, W. Tian, L. Sun, Chin. J. Catal. 27
(2006) 743.
[30] C. Drago, L. Caggiano, R.F.W. Jackson, Angew. Chem. Int. Ed. 44 (2005) 7221.
[31] S.H. Hsieh, Y.P. Kuo, H.M. Gau, Dalton Trans. (2007) 97.
[32] B. Pelotier, M.S. Anson, I.B. Campbell, S.J.F. Macdonald, G. Priem, R.F.W.
Jackson, Synlett 7 (2002) 1055.
[33] A.H. Vetter, A. Berkessel, Tetrahedron Lett. 39 (1998) 1741.
[34] Y.C. Jeong, S. Choi, Y.D. Hwang, K.H. Ahn, Tetrahedron Lett. 45 (2004) 9249.
[35] Y. Wu, J. Liu, X. Li, A.C. Chan, Eur. J. Org. Chem. (2009) 2607.
[36] K. Pádraig, E.L. Simon, R.M. Anita, Eur. J. Org. Chem. (2006) 4500.
[37] D.A. Cogan, G. Liu, K. Kim, B.J. Backes, J.A. Ellman, J. Am. Chem. Soc. 120 (1998)
8011.
[38] Y. Wang, M. Wang, X. Wang, Y. Chen, L. Sun, unpublished results.
[39] G. Coll, J. Morey, A. Costa, J.M. Saá, J. Org. Chem 53 (1988) 5345.
[40] R.W. Franck, R.B. Gupta, J. Org. Chem. 50 (1985) 4632.
[41] G. Ziegler, E. Haug, W. Frey, W. Kantlehner, Z. Naturforsch B: Chem. Sci. 56
(2001) 1178.
4. Conclusions
In conclusion, the Schiff bases 4a–e and 5a–e containing bro-
mo- and iodo-functionalized hydroxynaphthaldehydes are effi-
cient chiral inducers for the vanadium-catalyzed asymmetric
oxidations of various aryl methyl sulfides with H2O2 as terminal
oxidant. A comparison of the catalytic performances of VO(a-
cac)2/Schiff bases 4aÀe and 5aÀe, as well as their analogous Schiff
bases 4f and 5f without halo substituent, in the oxidation of thio-
anisole indicates that the number and the position of the halogen
atom on the naphthyl ring of the Schiff base play significant effects
on the enantioselectivity of the sulfoxides. More interestingly,
using these Schiff bases in combination with VO(acac)2, the asym-
metric oxidation of thioanisole in toluene afforded methyl phenyl
sulfoxide in reasonable yields (48–62%) with relatively high
enantioselectivities (91–94% ee), which are significantly higher
than the catalytic results obtained from the same reaction in tolu-
ene with Schiff bases (S)-2 and (R)-1 containing a dibromo- or diio-
do-functionalized salicyl moiety as ligands. With the modified
procedure by adding 1.5 equiv of H2O2 in two portions, the enanti-
oselectivity for the oxidation of thioanisole in toluene was further
improved up to 98% ee with a satisfactory yield (62%) when iodo-
functionalized 5e was used as ligand. The asymmetric oxidations of
other aryl methyl sulfides in toluene with dibromo-functionalized
5d and iodo-functionalized 5e as ligands, respectively, afforded the
corresponding sulfoxides in satisfactory yields (55À65%) with
excellent enantioselectivities (95À99% ee), which are the best re-
sults ever reported for such sulfide oxidation reactions in toluene
using vanadium-based catalysts. These results are valuable for
the industrial application of these asymmetric sulfoxidation reac-
tions, since as a solvent toluene is preferred over dichloromethane
and chloroform in an environment protection point of view.
[42] S.A. Blum, R.G. Bergman, J.A. Ellman, J. Org. Chem. 68 (2003) 150.
[43] I. Mohammadpoor-Baltork, M. Hill, L. Caggiano, R.F.W. Jackson, Synlett 20
(2006) 3540.
[44] S. Hellweg, U. Fischer, M. Scheringer, K. Hungerbühler, Green Chem. 6 (2004)
418.