P. Veerakumar et al. / Journal of Molecular Catalysis A: Chemical 332 (2010) 128–137
137
4. Conclusions
[24] R. Sevvel, S. Rajagopal, C. Srinivasan, N.M.I. Alhaji, A. Chellamani, J. Org. Chem.
65 (2000) 3334–3340.
[25] V.K. Sivasubramanian, M. Ganesan, S. Rajagopal, R. Ramaraj, J. Org. Chem. 67
(2002) 1506–1514.
[26] N.S. Venkataramanan, S. Premsingh, S. Rajagopal, K. Pitchumani, J. Org. Chem.
68 (2003) 7460–7470.
[27] N.S. Venkatramanan, G. Kuppuraj, S. Rajagopal, Coord. Chem. Rev. 249 (2005)
1249–1268.
[28] A. Mary Imelda Jeyaseeli, S. Rajagopal, J. Mol. Catal. A: Chem. 309 (2009)
103–110.
[29] B. Sreedhar, P. Radhika, B. Neelima, N. Hebalkar, A.K. Mishra, Catal. Commun.
10 (2008) 39–44.
[30] D.N. Dybtsev, A.L. Nuzhdin, H. Chun, K.P. Bryliakov, E.P. Talsi, V.P.K. Kim, Angew.
Chem. Int. Ed. 45 (2006) 916–920.
[31] O. Vidoni, K. Philippot, C. Amiens, B. Chaudret, O. Balmes, J.O. Malm, J.O. Bovin,
F. Senocq, M.J. Casanove, Angew. Chem. Int. Ed. 38 (1999) 3736–3738.
[32] A. Nowicki, V.L. Boulaire, A. Roucouxa, Adv. Synth. Catal. 349 (2007) 2326–
2330.
[33] C. Pan, K. Pelzer, K. Philippot, B. Chaudret, F. Dassenoy, P. Lecante, M.-J.
Casanove, J. Am. Chem. Soc. 123 (2001) 7584–7593.
This work provides important insight into the heterogeneous
catalysis on the H2O2 oxidation of sulfides in the presence of cat-
alyst I, which is one of the most convenient, cheap and green
methods for the synthesis of various sulfoxides. The vital role of
catalyst is surface binding and the surface binding facilitates the
interaction of substrate (thioether) with the oxidant (H2O2) result-
ing in the efficient formation of the selective oxidized products.
The synthesized catalyst I was characterized using XRD, HRTEM,
BET, H2 chemisorption, SEM–EDX, AFM, FT-IR, and UV–vis spectral
techniques and the characterization of products was done by 1H
NMR, FT-IR, and GC analysis. This nanocatalyst may prove useful in
the development of selective oxidation catalyst for the oxidation of
other organic substrates.
[34] M. Zawadzki, J. Okal, Mater. Res. Bull. 43 (2008) 3111–3121.
[35] W. Chen, J.R. Davies, D. Ghosh, M.C. Tong, J.P. Konopelski, S. Chen, Chem. Mater.
18 (2006) 5253–5259.
Acknowledgements
[36] I. Balint, A. Miyazaki, K. Aika, J. Catal. 207 (2002) 66–75.
[37] I. Balint, A. Miyazaki, K. Aika, Chem. Commun. (2002) 630–631.
[38] A.M. Karim, V. Prasad, G. Mpourmpakis, W.W. Lonergan, A.I. Frenkel, J.G. Chen,
D.G. Vlachos, J. Am. Chem. Soc. 131 (2009) 12230–12239.
[39] N. Bedford, C. Dablemont, G. Viau, P. Chupas, V. Petkov, J. Phys. Chem. C 111
(2007) 18214–18219.
The authors thank UGC for a JRF position under Meritorious
Fellowship Scheme and DST for the financial support.
Appendix A. Supplementary data
[40] J. Okal, Catal. Commun. 11 (2010) 508–512.
[41] S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of Porous
Solids and Powders: Surface Area, Pore Size and Density, Springer, 2004, ISBN
1402023022.
Supplementary data associated with this article can be found, in
[42] J.C. Groen, L.A.A. Peffer, J. Perez-Ramirez, Micropor. Mesopor. Mater. 60 (2003)
1–17.
[43] J. Okal, M. Zawadzki, L. Kepinski, L. Krajczyki, W. Tylus, Appl. Catal. A: Gen. 319
(2007) 202–209.
[44] J.A. Mieth, J.A. Schwarz, J. Catal. 118 (1989) 218–226.
[45] I. Balint, A. Miyazaki, K. Aika, Chem. Mater. 13 (2001) 932–938.
[46] J.R. Regalbuto, A. Navada, S. Shadid, M.L. Bricker, Q. Chen, J. Catal. 184 (1999)
335–348.
[47] E. Bus, J.T. Miller, J.A. van Bokhoven, J. Phys. Chem. B 109 (2005) 14581–14587.
[48] J.G. Goodwin Jr., J. Catal. 68 (1981) 227–232.
[49] B.J. Chen, G. Goodwin Jr., J. Catal. 158 (1996) 228–235.
[50] A. Sayari, H.T. Wang, J.G. Goodwin Jr., J. Catal. 93 (1985) 368–374.
[51] C. Zupanc, A. Hornung, O. Hinrichsen, M. Muhler, J. Catal. 209 (2002) 501–514.
[52] X. Yan, H. Liu, K.Y. Liew, J. Mater. Chem. 11 (2001) 3387–3391.
[53] Y. Zhang, J. Yu, H. Niu, H. Liu, J. Colloid Interface Sci. 313 (2007) 503–510.
[54] R.C. Weast, CRC Handbook of Chemistry and Physics, 70th ed., CRC Press, Boca
Raton, FL, 1989, D-154.
[55] C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, J. Am. Chem. Soc.
126 (2004) 8028–8037.
[56] N. Dimitratos, J.A.L. Sanchez, S. Meenakshisundaram, J.M. Anthonykutty, G.
Brett, A.F. Carley, S.H. Taylor, D.W. Knight, G.J. Hutchings, Green Chem. 11
(2009) 1209–1216.
[57] A. Miyazaki, I. Balint, K. Aika, Y. Nakano, J. Catal. 204 (2001) 364–371.
[58] F. Bonet, K.T. Elhsissen, K. Vijaya Sarathy, Bull. Mater. Sci. 23 (2000) 165–168.
[59] T.S. Smith, V.L. Pecoraro, Inorg. Chem. 41 (2002) 6754–6760.
[60] D.H. Koo, M. Kim, S. Chang, Org. Lett. 7 (2005) 5015–5018.
[61] G. Du, J.H. Espenson, Inorg. Chem. 44 (2005) 2465–2471.
[62] K.J. Adaikalasamy, N.S. Venkataramanan, S. Rajagopal, Tetrahedron 59 (2003)
3613–3619.
[63] S. Maksoud, A.B. Daniele, Sorokin, Green Chem. 10 (2008) 447–451.
[64] B.M. Choudary, B. Bharathi, Ch.V. Reddy, M.L. Kantam, J. Chem. Soc. Perkin Trans.
1 (2002) 2069–2074.
[65] B. Karimi, M. Ghoreishi-Nezhad, J.H. Clark, Org. Lett. 7 (2005) 625–628.
[66] W. Wang, Y. Xu, D.I.C. Wang, Z. Li, J. Am. Chem. Soc. 131 (2009) 12892–12893.
[67] N. Chakroune, G. Viau, S. Ammar, L. Poul, D. Veautier, M.M. Chehimi, C. Man-
geney, F. Villain, F. Fievet, Langmuir 21 (2005) 6788–6796.
[68] T. Tsukatani, H. Fujihara, Langmuir 21 (2005) 12093–12095.
References
[1] A.L. Nuzhdin, D.N. Dybtsev, V.P. Fedinb, G.A. Bukhtiyarova, Dalton Trans. (2009)
10481–10485.
[2] J.M. Basset, J.P. Candy, C.C. Santini, in: M. Beller, C. Bolm (Eds.), Transition Metals
for Organic Synthesis, 2, Wiley-VCH, Weinheim, 1998, p. 387.
[3] K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 42 (2003) 1480–1483.
[4] Y. Na, S. Park, S.B. Han, H. Han, S. Ko, S. Chang, J. Am. Chem. Soc. 126 (2004)
250–258.
[5] B. Tang, J. Ge, L. Zhuo, G. Wang, J. Niu, Z. Shi, Y. Dong, Eur. J. Inorg. Chem. (2005)
4366–4369.
[6] L.J. Alvarez, L.E. Leon, J.F. Sam, M.J. Capitan, J.A. Odriozola, J. Phys. Chem. 99
(1995) 17872–17876.
[7] E. Choi, C. Lee, Y. Na, S. Chang, Org. Lett. 4 (2002) 2369–2371.
[8] S. Mori, M. Takubo, K. Makida, T. Yanase, S. Aoyagi, T. Maegawa, Y. Monguchi,
H. Sajiki, Chem. Commun. (2009) 5159–5161.
[9] F. Vocanson, Y.P. Guo, J.L. Namy, H.B. Kagan, Synth. Commun. 28 (1998)
2577–2582.
[10] K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 41 (2002) 4538–4542.
[11] K. Yamaguchi, N. Mizuno, Chem. Eur. J. 9 (2003) 4353–4361.
[12] C.M. Ho, W.Y. Yu, C.M. Che, Angew. Chem. Int. Ed. 43 (2004) 3303–3307.
[13] L. Zhang, C. Zhang, H. He, J. Catal. 261 (2009) 101–109.
[14] J. Grunwaldt, M. Caravati, A. Baiker, J. Phys. Chem. B 110 (2006) 25586–25589.
[15] C. Evangelisti, G. Vitulli, E. Schiavi, M. Vitulli, S. Bertozzi, P. Salvadori, L.
Bertinetti, G. Martra, Catal. Lett. 116 (2007) 57–62.
[16] L. Xu, C. He, M. Zhu, S. Fang, Catal. Lett. 114 (2007) 202–205.
[17] L. Zhang, X. Wang, B. Tan, U.S. Ozkan, J. Mol. Catal. A: Chem. 297 (2009) 26–34.
[18] S. Kim, S. Ihm, Ind. Eng. Chem. Res. 41 (2002) 1967–1972.
[19] I. Fernandez, N. Khiar, Chem. Rev. 103 (2003) 3651–3705.
[20] M.C. Carreno, Chem. Rev. 95 (1995) 1717–1760.
[21] S. Balakumar, P. Thanasekaran, E. Rajkumar, K. John Adaikalasamy, S. Rajagopal,
R. Ramaraj, T. Rajendran, B. Manimaran, K.L. Lu, Org. Biomol. Chem. 4 (2006)
352–358.
[22] E. Rajkumar, S. Rajagopal, Photochem. Photobiol. Sci. 7 (2008) 1407–1414.
[23] A. Chellamani, P. Kulanthaipandi, S. Rajagopal, J. Org. Chem. 64 (1999)
2232–2239.