[FeII(L3)2](ClO4)2·CH3OH (III). In a 100 mL Schlenk tube, a
solution of L3 (100 mg, 0.26 mmol) and Fe(ClO4)2·6H2O (33 mg,
0.13 mmol) in methanol (25 mL) was heated at 80 ◦C for 6 h. The
reaction mixture was cooled to RT and 100 mL of diisopropyl
ether was added to the flask under a N2 atmosphere to yield wine–
red precipitate of the complex (III). Wine–red coloured crystals
were grown from diffusing the diisopropyl ether into a methanol
solution of the complex (III) under N2. Elemental analysis calcd
for, C29H33Cl2FeI2N12O9: C, 34.16; H, 3.12; N, 17.43%. Found: C,
34.25; H, 3.26; N, 17.36%. FT-IR (KBr) n in cm-1: 3511, 3117,
3081, 2961, 2866, 1614, 1548, 1474, 1408, 1254, 1213, 1088, 1011,
845, 752, 623.
3
4
was stirred vigorously for 8 h at RT of the methanol was removed
and water (100 mL) was added to it. The mixture was cooled in
an ice bath for 2 h to get compound as white precipitate which
upon filtration gave white powder of L2 in 74% yield (1.2 g). Anal.
Calcd for C14H17N7: C, 59.35; H, 6.05; N, 34.60. Found: C, 59.39;
H, 6.02; N, 34.58. LC–MS m/z calcd 283.2, found 283.4. 1H NMR
(400 MHz, CDCl3, 25 ◦C) d (ppm): 8.60 (d, 1H), 8.11(s, 1H), 7.73
(d, 1H), 7.39 (s, 1H), 7.19 (s, 1H), 6.45–6.44 (m, 1H), 4.53 (s,
2H, –NH2), 4.42 (t, 2H, J = 7.12 Hz, 1¢¢¢), 1.94 (q, 2H, J =
7.62 Hz, 2¢¢¢), 1.47–1.27(m, 2H, 3J = 7.72 Hz,3¢¢¢), 0.98 (t, 3H, 3J =
7.02 Hz,4¢¢¢).13C NMR (100 MHz, CDCl3, 25 ◦C) d (ppm): 155.6,
152.4, 149.3, 148.1, 141.5, 127.0, 122.0, 107.1, 103.9, 96.2, 50.2,
32.2, 19.7, 13.4.
3
3
[FeII(L2)2](ClO4)2 (IV). A similar procedure as for I was
applied using Fe(ClO4)2·6H2O (50 mg, 0.15 mmol). Crystallization
yielded yellow color crystals (Yield ca. 40 mg). FT-IR (KBr) n
in cm-1: 3462, 3352, 3225, 3127, 2963, 1636, 1526, 1493, 1408,
1277, 1215, 1088, 1007, 972, 768, 623
2-(1-butyl-1H-1,2,3-triazol-4-yl)-4-iodo-6-(1H-pyrazol-1-yl)-
pyridine (L3). Compound L2 (0.72 g, 2.54 mmol, 1.0 eq) was
suspended in conc. HCl (20 mL) and stirred for 24 h at RT. The
mixture was cooled in an ice bath and NaNO2 (0.35 g, 5.1 mmol,
2.0 eq) dissolved in a minimum amount of water (2 mL) was added
drop-wise. To this KI (1.05 g, 6.35 mmol, 2.5 eq) in water (5 mL)
was slowly added and the solution was stirred for 5 min. THF
(10 mL) was added into the reaction mixture and the solution was
neutralized by adding solid NaHCO3. The product was extracted
with diethylether (2 ¥ 50 mL) and washed with Na2S2O3 solution.
The collected organic layers were combined, dried over MgSO4
and the solvent was evaporated by vacuum evaporator to afford
a white color product L3 in 40% yield (0.4 g). Anal. Calcd for
C14H15N6I: C, 42.65; H, 3.84; N, 21.32. Found: C, 42.60; H, 3.86; N,
21.29. LC–MS m/z calcd. 394.2, found 394.1. 1H NMR (400 MHz,
Acknowledgements
We are grateful to DST New Delhi for financial support under
Fast Track Scheme for Young Scientist (Grant No. SR/FTP/CS-
115/2007). Our special thanks to Centre for Nanotechnology
(CNT), UoH for providing the PPMS and VSM-SQUID facility.
NC thanks CSIR New Delhi for a JRF.
References
◦
CDCl3, 25 C) d (ppm): 8.58 (d, 1H), 8.46(d, 1H), 8.36 (d, 1H),
1 For general reviews: (a) Spin Crossover in Transition Metal Com-
pounds I (Eds: P. Gu¨tlich, H. A. Goodwin), Topics in Current Chem-
istry, Vol. 233, Springer, Berlin 2004; (b) H. Spiering Spin Crossover in
Transition Metal Compounds IIITopics in Current ChemistrySpringer-
Verlag: Berlin, 2004; Vol. 235, p 171 and references therein; (c) P.
Gu¨tlich, Struct. Bonding (Berlin) 1981, 44, 83-195; (d) P. Gu¨tlich and
8.15(s, 1H), 7.77 (d,1H), 6.5–6.49 (m, 1H), 4.44 (t, 2H, 3J = 7.21 Hz,
3
3
1¢¢¢), 1.96 (q, 2H, J = 7.6 Hz, 2¢¢¢), 1.48–1.39 (m, 2H, J = 7.32
Hz,3¢¢¢), 0.99 (t, 3H, 3J = 7.02 Hz, 4¢¢¢).13C NMR (100 MHz, CDCl3,
25 ◦C) d (ppm): 150.9, 149.1, 146.5, 133, 142.5, 127.0, 126.5, 122.4,
120.4, 108.0, 50.3, 32.2, 19.7, 13.4. FT-IR (KBr) n in cm-1: 3439,
3352, 3240, 3080, 2959, 2930, 2872, 1645, 1618, 1554, 1469, 1427,
1402, 1263, 1229, 1198, 1166, 1086, 1045, 984,922, 881,800, 752,
669, 625, 440.
A. Hauser, Coord. Chem. Rev., 1990, 97, 1–22; (e) E. Ko¨nig, Prog.
Inorg. Chem., 1987, 35, 527–623; (f) A. B. Gaspar, V. Ksenofontov, M.
Seredyuk and P. Gu¨tlich, Coord. Chem. Rev., 2005, 249, 2661; (g) P.
Gu¨tlich, Y. Garcia and T. Woike, Coord. Chem. Rev., 2001, 839, 219;
(h) M. A. Halcrow, Coord. Chem. Rev., 2005, 249, 2880; (i) M. A.
Halcrow, Coord. Chem. Rev., 2009, 253, 2493.
2 (a) A. Galet, M. C. Mun˜oz and J. A. Real, Chem. Commun., 2006, 4321;
(b) A. Galet, A. B. Gasper, M. C. Mun˜oz, J. A. Real, G. Levchenko and
J. A. Real, Inorg. Chem., 2006, 45, 9670.
3 (a) M. Yamada, H. Hagiwara, H. Torigoe, N. Matsumoto, M. Kojima,
F. Dahan, J.-P. Tuchagues, N. Re and S. Iijima, Chem.–Eur. J., 2006,
12, 4536; (b) Y. Garcia, O. Kahn, L. Rabardel, B. Chansou, L. Salmon
and J.-P Tuchagues, Inorg. Chem., 1999, 38, 4663.
4 (a) S. M. Neville, B. Moubaraki, K. S. Murray and C. J. Kepert, Angew.
Chem., Int. Ed., 2007, 46, 2059; (b) G. J. Halder, C. J. Kepert, B.
Moubaraki, K. S. Murray and J. D. Cashion, Science, 2002, 298, 1762.
5 (a) R. Herchel, R. Boca, M. Gembicky´, J. Kozˇ´ısˇek and F. Renz, Inorg.
Chem., 2004, 43, 4103; (b) M. Ruben, E. Breuning, J. M. Lehn, V.
Ksenofontov, F. Renz, P. Gu¨tlich and G. B. Vaughan, Chem.–Eur. J.,
2003, 9, 5176; (c) R. Boca, M. Boca, H. Ehrenberg, H. Fuess, W. Linert,
F. Renz and I. Svoboda, Chem. Phys., 2003, 293, 375.
6 (a) C. Enachescu, J. Linares, F. Varret, K. Boukheddaden, E. Codjovi,
S. G. Salunke and R. Mukherjee, Inorg. Chem., 2004, 43, 4880; (b) V.
Mishra, R. Mukherjee, J. Linares, C. Balde, C. Desplanches, J.-F.
Letard, E. Collet, L. Toupet, M. Castro and F. Varret, Inorg. Chem.,
2008, 47, 7577.
[FeII(L1)2](ClO4)2·CH3CN (I). In a 100 mL Schlenk tube, a
solution of L1 (103 mg, 0.33 mmol) and Fe(ClO4)2·6H2O (40 mg,
◦
0.15 mmol) in acetonitrile (15 mL) was heated at 80 C for 6 h.
The reaction mixture was cooled to RT and 80 mL of diisopropyl
ether was added to it under a N2 flow to yield a red–orange
precipitate of the complex (I). Wine–red colour crystals were
grown from diffusing the diisopropyl ether into an acetonitrile
solution of the complex (I) under N2. Yield ca. 65 mg. Anal. calcd
for C38H46Cl2FeN14O12: C, 44.85; H, 4.56; N, 19.27%. Found: C,
44.68; H, 4.61; N, 19.12%. FT-IR (KBr) n in cm-1: 3117, 2963,
2932, 2872, 1726, 1631, 1562, 1524, 1481, 1408, 1263, 1211, 1101,
768, 623, 536.
[FeII(L1)2](BF4)2·CH3CN (II). A similar procedure as for I was
applied using Fe(BF4)2·6H2O (50 mg, 0.15 mmol). Crystallization
gave wine-red crystalline blocks (Yield ca. 55 mg). Anal. calcd
for, C40H30B2FeN14O8F8: C, 45.99; H, 4.67; N, 19.76%. Found: C,
45.78; H, 4.58; N, 19.88%. FT-IR (KBr) n in cm-1: 3130, 2963,
2934, 2876, 1732, 1632, 1562, 1528, 1481, 1441, 1408, 1373, 1288,
1254, 1209, 1055, 966, 912, 860, 769, 611, 523.
7 D. L. Reger, J. R. Gardinier, M. D. Smith, A. M. Shahin, G. J. Long,
L. Rebbouh and F. Grandjean, Inorg. Chem., 2005, 44, 1852–1866.
8 (a) W. Zhang, F. Zhao, T. Liu, M. Yuan, Z.-M. Wang and S. Gao,
Inorg. Chem., 2007, 46, 2541; (b) O. Sato, J. Tao and Y.-Z. Zhang,
Angew. Chem., Int. Ed., 2007, 46, 2152; (c) B. Li, J. Tao, H.-L. Sun,
O. Sato, R.-B. Huang and L.-S. Zheng, Chem. Commun., 2008, 2269;
This journal is
The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 9872–9878 | 9877
©