Inorganic Chemistry
Article
Table 2. Comparison of the Results of the Ammoxidation of 2,4- and 2,6-DCT in the Literature
substrate
catalyst
VPO/SiO2
(NH4)2[(VO)3(P2O7)2]
VPO/Al2O3
bulk VPO
VPO/SiO2
VPO/SiO2
V-Cr-O
conversion (%)
yield (%)
selectivity (%)
ref
2,4-DCT
2,6-DCT
2,6-DCT
2,6-DCT
2,6-DCT
2,6-DCT
2,6-DCT
2,4-DCT
2,6-DCT
97
50
99
92
87
90
78
90
88
70
18
71
55
57
57
70
77
75
72
36
72
60
66
63
90
86
85
29
30
31
33
32
33
34
urchins
urchins
this work
this work
(5) Li, T.; Zeng, W.; Miao, B.; Zhao, S.; Li, Y.; Zhang, H. Urchinlike
hex-WO3 Microspheres: Hydrothermal Synthesis and Gas-Sensing
Properties. Mater. Lett. 2015, 144, 106−109.
region of the urchin-like W-V-O catalyst contributes to
enhancing the partial oxidation of DCT to a dichlorobenzal-
dehyde intermediate.28 As a consequence, the prepared urchin-
like W-V-O catalyst exhibits excellent catalytic properties.
(6) Dhachapally, N.; Kalevaru, V. N.; Bruckner, A.; Martin, A. Metal
̈
Vanadate Catalysts for the Ammoxidation of 2-Methylpyrazine to 2-
Cyanopyrazine. Appl. Catal., A 2012, 443-444, 111−118.
(7) Dropka, N.; Smejkal, Q.; Kalevaru, V. N.; Martin, A. Laboratory
Set-up to Pilot Plant Investigations on Vapour Phase Ammoxidation
of 2, 6-Dichlorotoluene. Appl. Catal., A 2008, 349, 125−132.
(8) Martin, A.; Kalevaru, V. N.; Smejkal, Q. Ammoxidation of 2,6-
Dichlorotoluene-From First Trials to Pilot Plant Studies. Catal. Today
2010, 157, 275−279.
CONCLUSION
■
In conclusion, nanobelt-built urchin-like W-V-O composite
microspheres have been successfully prepared by a one-pot
hydrothermal method using V2O5, ammonium tungstate
hydrate, and oxalic acid as the starting materials. The as-
prepared material consists of numerous one-dimensional
nanobelts radially grown from the center with lengths of
several micrometers, widths of about 50 nm, and thicknesses of
approximately 10−20 nm. Vanadium oxides are dispersed
highly either on the external surface or inside the channel
surface of the hexagonal WO3 structure. In the ammoxidation
reactions of 2,4- and 2,6-dichlorotoluene, the W-V-O material
shows excellent performance with yields of 2,4- and 2,6-
dichlorobenzonitrile respectively reaching up to 77.3 and
75.1% due to the novel nanostructures.
(9) Dhachapally, N.; Kalevaru, V. N.; Radnik, J.; Martin, A. Tuning
the Surface Composition of Novel Metal Vanadates and its Effect on
the Catalytic Performance. Chem. Commun. 2011, 47, 8394−8396.
(10) Martin, A.; Lucke, B. Ammoxidation and Oxidation of
̈
Substituted Methyl Aromatics on Vanadium-Containing Catalysts.
Catal. Today 2000, 57, 61−70.
(11) Lucke, B.; Narayana, K. V.; Martin, A.; Jahnisch, K. Oxidation
̈
̈
and Ammoxidation of Aromatics. Adv. Synth. Catal. 2004, 346, 1407−
1424.
(12) Martin, A.; Kalevaru, V. N. Heterogeneously Catalyzed
Ammoxidation: A Valuable Tool for One-Step Synthesis of Nitriles.
ChemCatChem 2010, 2, 1504−1522.
AUTHOR INFORMATION
Corresponding Author
ORCID
Notes
■
(13) Dwivedi, R.; Sharma, P.; Sisodiya, A.; Batra, M. S.; Prasad, R. A
DFT-Assisted Mechanism for Evolution of the Ammoxidation of 2-
Chlorotoluene (2-CLT) to 2-Chlorobenzonitrile (2-CLBN) over
Alumina-Supported V2O5 Catalyst Prepared by a Solution Combus-
tion Method. J. Catal. 2017, 345, 245−257.
́
(14) Soriano, M. D.; Concepcion, P.; Nieto, J. M. L.; Cavani, F.;
Guidetti, S.; Trevisanut, C. Tungsten-Vanadium Mixed Oxides for the
Oxidehydration of Glycerol into Acrylic Acid. Green Chem. 2011, 13,
2954−2962.
The authors declare no competing financial interest.
(15) Goto, Y.; Shimizu, K.; Murayama, T.; Ueda, W. Hydrothermal
Synthesis of Microporous W-V-O as an Efficient Catalyst for
Ammoxidation of 3-Picoline. Appl. Catal., A 2016, 509, 118−122.
ACKNOWLEDGMENTS
This work was partially supported by the National Natural
Science Foundation of China (Grant 51572201).
■
(16) Kalevaru, V. N.; Lucke, B.; Martin, A. Synthesis of 2, 6-
̈
Dichlorobenzonitrile from 2, 6-Dichlorotoluene by Gas Phase
Ammoxidation over VPO Catalysts. Catal. Today 2009, 142, 158−
164.
REFERENCES
■
(1) Zhou, Y. X.; Zhang, Q.; Gong, J. Y.; Yu, S. H. Surfactant-assisted
Hydrothermal Hynthesis and Magnetic Properties of Urchin-like
MnWO4 Microspheres. J. Phys. Chem. C 2008, 112, 13383−13389.
(2) Boschloo, G. K.; Goossens, A.; Schoonman, J. Photo-
electrochemical Study of Thin anatase TiO2 Films Prepared by
Metallorganic Chemical Vapor Deposition. J. Electrochem. Soc. 1997,
144, 1311−1317.
(3) Xiao, Y.; Liu, S.; Li, F.; Zhang, A.; Zhao, J.; Fang, S.; Jia, D. 3D
Hierarchical Co3O4 Twin-Spheres with an Urchin-Like Structure:
Large-Scale Synthesis, Multistep-Splitting Growth, and Electro-
chemical Pseudocapacitors. Adv. Funct. Mater. 2012, 22, 4052−4059.
(4) Wang, Q.; Liu, B.; Wang, X.; Ran, S.; Wang, L.; Chen, D.; Shen,
G. Morphology Evolution of Urchin-like NiCo2O4 Nanostructures
and Their Applications as Psuedocapacitors and Photoelectrochem-
ical cells. J. Mater. Chem. 2012, 22, 21647−21653.
(17) Suzuki, H.; Kimura, Y. Synthesis of 3, 4-Difluorobenzonitrile
and Monofluorobenzonitriles by Means of Halogen-Exchange
Fluorination. J. Fluorine Chem. 1991, 52, 341−351.
(18) Dropka, N.; Kalevaru, V. N.; Martin, A.; Linke, D.; Lucke, B.
̈
The Kinetics of Vapour-Phase Ammoxidation of 2, 6-Dichlorotoluene
over VPO Catalyst. J. Catal. 2006, 240, 8−17.
(19) Szilagyi, I. M.; Madarasz, J.; Pokol, G.; Hange, F.; Szalontai, G.;
Varga-Josepovits, K.; Toth, A. L. The Effect of K+ Ion Exchange on
the Structure and Thermal Reduction of Hexagonal Ammonium
Tungsten Bronze. J. Therm. Anal. Calorim. 2009, 97, 11−18.
́
(20) Chieregato, A.; Bandinelli, C.; Concepcion, P.; Soriano, M. D.;
Puzzo, F.; Basile, F.; Cavani, F.; Nieto, J. M. L. Structure-Reactivity
Correlations in Vanadium-Containing Catalysts for One-Pot Glycerol
Oxidehydration to Acrylic Acid. ChemSusChem 2017, 10, 234−244.
E
Inorg. Chem. XXXX, XXX, XXX−XXX