Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC08530C
COMMUNICATION
Journal Name
Weller, Top. Organomet. Chem., 2012, 49, 153; (c) E. M.
Leitao, T. Jurca and I. Manners, Nat. Chem., 2013, , 817.
5
2
(a) J. F. Dunne, S. R. Neal, J. Engelkemier, A. Ellern and A. D.
Sadow, J. Am. Chem. Soc., 2011, 133, 16782; (b) M. S. Hill, D.
J. Liptrot, D. J. MacDougall, M. F. Mahon and T. P. Robinson,
Chem. Sci., 2013, 4, 4212; (c) L. K. Allen, R. García-Rodríguez
and D. S. Wright, RSC Advances, 2015, 44, 12112; (d) S. Anga,
Y. Sarazin, J. Carpentier and T. K. Panda, ChemCatChem
2
016, 8, 1373.
3
4
(a) J. X. Wang, A. K. Dash, J. C. Berthet, M. Ephritikhine, M. S.
Eisen, J. Organomet. Chem., 2000, 610, 49; (b) W. Xie, H. Hu
and C. Cui, Angew. Chem., Int. Ed., 2012, 51, 11141.
(a) W.-D. Wand and R. Eisenberg, Organometallics, 1991, 10
222; (b) J. He, H. Q. Liu, J. F. Harrod and R. Hynes,
Organometallics, 1994, 13, 336; (c) S. Itagaki, K. Kamata, K.
Yamaguchi and N. Mizuno, Chem. Commun., 2012, 48, 9269;
d) C. D. Königs, M. F. Müller, N. Aiguabella, H. F. T. Klare and
,
2
(
M. Oestreich, Chem. Commun., 2013, 49, 1506; (e) A. E.
Nako, W. Chen, A. J. P. White and M. R. Crimmin,
Organometallics, 2015, 34, 4369.
(a) C. Bellini, J.-F. Carpentier, S. Tobisch and Y. Sarazin,
Angew. Chem., Int. Ed., 2015, 54, 7679; (b) C. Bellini, V.
Dorcet, J.-F. Carpentier, S. Tobisch, Y. Sarazin, Chem.—Eur. J.,
Scheme 3. Low temperature NMR studies.
5
F
4
those of the cation [NEt H ][BAr ] synthesized by reaction of
2
2
2
016, 22, 4564; (c) C. Bellini, T. Roisnel, J.-F. Carpentier, S.
F
NEt H with HBAr ·Et O (see ESI). In support to this, when the
2
4
2
Tobisch and Y. Sarazin, Chem.—Eur. J., 2016, 22, 15733.
O. Rivada-Wheelaghan, B. Donnadieu, C. Maya and S.
Conejero, Chem.—Eur. J., 2010, 16, 10323.
(a) M. Roselló-Merino, J. López-Serrano and S. Conejero, J.
Am. Chem. Soc., 2013, 135, 10910; (b) M. Roselló-Merino, R.
reaction of 1a with Ph SiH and NEt H was carried out using 2
2
6
7
2
2
eq of NEt H (1a : Ph SiH : NEt H stoichiometry 1 : 1 : 2) under
2
2
2
2
identical reactions conditions, we observed complex
3
together with Ph SiH(NEt ) and species A as major products
2
2
J. Rama, J. Díez and S. Conejero, Chem. Commun., 2016, 52
8389.
,
but, importantly, no Ph SiH2 nor 1a are observed (in
2
agreement with the need of two equiv of amine per silane).
8
9
1
(a) X.-L. Luo and R. H. Crabtree, J. Am. Chem. Soc., 1989, 111
527; (b) G. J. Kubas, Adv. Inorg. Chem., 2004, 56, 127.
P. Ríos, J. Díez, J. López-Serrano, A. Rodríguez and S.
Conejero, Chem.—Eur., J. 2016, 22, 16791.
0 J. Y. Yang, P. S. White, C. K. Schauer and M. Brookhart,
Angew. Chem., Int. Ed., 2008, 47, 4141.
,
2
The final step of the process is the protonation of the platinum
F
hydride
3
by the ammonium salt [NEt H ][BAr ], releasing H
2
2
4
2
1
8
and complex 1a that is hydrogenated leading to 1b
.
In summary, we have developed a very selective and
efficient catalytic system for the generation of amino-silanes 11 O. Rivada-Wheelaghan, M. Roselló-Merino, M. A. Ortuño, P.
Vidossich, E. Gutiérrez-Puebla, A. Lledós and S. Conejero,
Inorg. Chem., 2014, 53, 4257.
(up to 1 mmol scale) using a highly electrophilic, robust, Pt(II)
complex that can operate at ppm catalyst loadings.
Experimental evidence hints at a process involving the transfer
of a hydride from the Si−H bond to plaꢀnum without an
1
2 At catalyst loadings below 0.01% no bis(amino)silanes are
produced in the presence of an excess of amines. We are
currently investigating the reasons for this effect.
oxidative addition pathway. Thus, the cationic platinum(II) 13 M. A. Ortuño, S. Conejero and A. Lledós, Beilstein J. Org.
Chem., 2013, 9, 1352.
complex 1a can be viewed as a new example of Lewis acid
catalyst in which their electrophilicity is transmitted to a silicon
atom upon coordination of the silane leading to a σ-SiH
1
1
4 Similar induction periods, associated to the need to generate
a vacant site, have been observed during dehydrocoupling
process of amino-boranes by Ruthenium complexes: A. E. W.
Ledger, C. E. Ellul, M. F. Mahon, J. M. J. Williams and M. K.
Whittlesey, Chem.—Eur. J., 2011, 17, 8704.
5 Poisoning experiments using a large excess of Hg (1000
equiv) proceeded at the same rate with identical kinetic
sigmoid profile, ruling out the formation nanoparticles or
colloids during the reaction.
1
9,19
complex (with a η coordination mode).
Current work is
geared at determining the mechanism of the dehydrocoupling
process.
We are grateful for financial support from the Junta de
Andalucía (FQM-2126) and Spanish MINECO (CTQ2013-40591-
P, CTQ2016-81797-REDC and CTQ2016-76267-P, FEDER
support) and Principado de Asturias (FC-15-GRUPIN14-006). P.
R. thanks the Junta de Andalucía for a research grant.
1
1
6 Kinetic profiles in all reactions with Ph
exhibit exponential shapes (see ESI for details).
7 Overlapping of this signal with those of the phenyl groups in
the Ph SiH and Ph SiH(NEt ) precluded integration of this
signal. However, in the reaction of Et SiH and NEt H the
relative integral of this signal is 2 with respect to the Et
fragments. Significantly, the chemical shifts of species
both experiments are identical, with independence of the
silane used, hinting at being the same in nature.
8 We have previously proved that ammonium salts can
protonate complex producing H and 1a (see ref. 7a).
2 2 2 2
SiH (and Et SiH )
2
2
2
2
2
2
2
Conflicts of interest
There are no conflicts to declare.
A
in
A
1
1
Notes and references
3
2
1
(a) G. Alcaraz and S. Sabo-Etienne, Angew. Chem., Int. Ed.,
010, 49, 7170; (b) H. C. Johnson, T. N. Hooper and A. S.
9 (a) M. C. Lipke, A. L. Liberman-Martin, T. D. Tilley, Angew.
Chem., Int. Ed., 2017, 56, 2260; (b) J. Y. Corey, Chem. Rev.
2
2
016, 116, 11291.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins