4 T. J. Wallace, J. M. Miller, H. Probner and A. Schriesheim,
Proc. Chem. Soc., 1962, 384; T. J. Wallace, A. Schriesheim and
W. Bartok, J. Org. Chem., 1963, 28, 1311.
5 G. A. Russel and E. G. Janzen, J. Am. Chem. Soc., 1962, 84, 4513;
G. A. Russel, R. G. Janzen, H.-D. Becker and F. Smentowski,
J. Am. Chem. Soc., 1962, 84, 2652.
6 (a) R. D. Guthrie and N. S. Cho, J. Am. Chem. Soc., 1975, 97, 2280;
(b) D. N. R. Rao and R. F. Mason, Basic Life Sci., 1988, 49, (Oxygen
Radicals in Biology and Medicine, 787); M. Rahman and S. K. Naher,
J. Organomet. Chem., 1987, 329, 133.
resonance integral.23b,29 Using the value for hν of 2.63 eV for the
470 nm charge transfer, I and EA from the literature, and C by
calculation, a value of 1.81 eV for β can be derived, which lies within
the reported small range of values for this integral.34 The resonance
energy gained on forming the tight complex is given by β2/(I Ϫ EA ϩ
C),23b,29 which in the present case for DHA–PhNO2–Hϩ is 78 kJ
molϪ1
.
31 In the absence of an ionization energy for DHA itself, the value for
1,2-dimethylbenzene was used. K. Watanabe, J. Chem. Phys., 1957,
26, 542.
7 M. K. Eberhardt, Tetrahedron Lett., 1984, 25, 3663; J. Eibenberger,
D. Schulte-Frohlinde and S. Steenben, J. Phys. Chem., 1980, 84, 704.
8 N. Kornblum and M. J. Fifolt, Tetrahedron, 1989, 45, 1311;
L. Weisler and R. W. Helmkamp, J. Am. Chem. Soc., 1945, 67, 1167;
R. Bacaloglu, A. Blasko, C. Bunton, E. Dorwin, F. Ortega and
C. Zucco, J. Am. Chem. Soc., 1991, 113, 238.
9 M. Hudlicky, Reductions in Organic Synthesis, ACS Monograph
188, American Chemical Society, Washington DC, 1996, pp. 94–95.
10 R. P. Austin and J. H. Ridd, J. Chem. Soc., Chem. Commun., 1992,
1599; R. P. Austin and J. H. Ridd, J. Chem. Soc., Perkin Trans. 2,
1994, 1411; R. P. Austin and J. H. Ridd, J. Chem. Soc., Perkin Trans.
2, 1994, 1205.
32 The electron affinity for protonated nitrobenzene is unknown but it
can be estimated quite accurately. The largest electron affinities are
about 3 eV and nitrobenzene itself has a value of 1.01 eV.35 It might
therefore be expected that protonated nitrobenzene should have an
electron affinity in the range 1.01 < EA < 3.0 eV. It has been pointed
out that reduction potentials (E1/2) should correlate with the orbital
energy of the first unoccupied molecular orbital in a molecule.36
Electron affinity should also correlate with this same orbital energy
and, therefore, there should be a linear correlation between electron
affinity (EA) and reduction potential (E1/2). By using values for
electron affinities for a series of compounds35 and known E1/2
reduction potentials for the same compounds,37 a graph can be
11 G. A. Clowes, J. Chem. Soc. (C), 1968, 2519.
12 I. D. Entwistle, R. A. W. Johnstone and A. H. Wilby, Chemical
Reviews, 1985, 85, 129.
13 J. March, Advanced Organic Chemistry, 4th edn., Wiley, New York,
1992, pp. 1216–1217.
14 D. H. Geske and A. H. Maki, J. Am. Chem. Soc., 1960, 82, 2671;
B. Kalyanaram, E. Perez-Reyes and R. P. Mason, Mol. Pharm.,
1979, 16, 1059; B. Kalyanaram, R. P. Mason, R. Rowlett and
L. D. Kispert, Biochim. Biophys. Acta, 1981, 660, 102; Y. Ito,
T. Konoika and T. Saeguta, Terahedron Lett., 1974, 1287.
15 A. J. Fry, Synthetic Organic Electrochemistry, Harper and Row, New
York, 1972, pp. 224–234; A.J. Fry, in The Chemistry of Amino,
Nitroso and Nitro Compounds and their Derivatives, suppl. F, part 1,
ch. 8, ed. S. Patai, Wiley, Chichester, 1982, p. 319; B. Kastening,
Electrochim. Acta, 1964, 9, 241.
plotted, which gives a good linear correlation with, EA = 1.49(E1/2)
ϩ 2.79 eV (correlation coefficient = 0.9847). At the acidities used in
the experiments described here, the E1/2 value for nitrobenzene is
Ϫ0.14 V.27 Therefore, from the linear correlation with EA, the
electron affinity of protonated nitrobenzene is estimated to be 2.6
eV.
33 The Coulombic term (C) or potential energy for the complex can be
derived from the expression, C = z1z2NAe2/4πε0r, in which z1,z2 are
the numbers of charges (z1 = z2 = 1 for transfer of one electron), NA
is Avagadro’s number, e is the charge on the electron (1.6 × 10Ϫ19 C),
ε0 is the permittivity of the solution (= permittivity of free space ×
dielectric constant for nitrobenzene = 3.19 × 10Ϫ10 F mϪ1) and r is the
distance apart of the two charged species (closest approach of two
carbon atom radii (1.34 × 10Ϫ10 m). Insertion of these values gives C
= 0.3 eV.
16 C. D. Nenitzescu and A. Balaban, Chem. Ber., 1958, 91, 2109.
17 A. J. Gordon and R. A. Ford, The Chemist’s Companion, Wiley,
New York, 1972, pp. 138–140.
34 R. L. Flurry, Molecular Orbital Theories of Bonding in Organic
Molecules, Edward Arnold, London, 1968, p. 59.
35 S. Chowdhury, T. Heinis, E. Grimsrud and P. Kebarle, J. Phys.
Chem., 1986, 90, 2747.
36 G. J. Hoijtink, Rec. Trav. Chim. Pays-Bas, 1955, 1525; G. Cauquis,
in Organic Electrochemistry, ed. M. M. Baizer, Marcel Dekker,
New York, 1973, pp. 75–79.
18 All heats of formation are known accurately for a temperature
of 25 ЊC: dihydroanthracene (167 kJ molϪ1),19 anthracene (234 kJ
molϪ1),19 nitrobenzene (67 kJ molϪ1),20a aniline (88 kJ molϪ1),20a
20a
water (Ϫ242 kJ molϪ1
)
.
19 A. Magnus, H. Hartman and F. Becker, Z. Physik. Chem., 1951, 197,
37 Reduction potentials were taken from reference 26, (pp. 752, 769,
770, 920, 934–938). Fourteen compounds were found to be common
to references 26,35 and these were used for the correlation of E1/2
with EA. Values for E1/2 from reference 26 were those relating to
solutions in MeCN at pH 7, with a Hg electrode and a standard
calomel electrode as reference.
85.
20 Handbook of Chemistry and Physics, 76th edn., ed. D. R. Lide,
CRC Press, Boca Raton, 1995; (a) pp. 5–36 and 5–16; (b) p. 6–170.
21 J. E. Leffler, Science, 1953, 117, 340; G. S. Hammond, J. Am. Chem.
Soc., 1955, 77, 334.
22 L. J. Andrews, Chem. Rev., 1954, 54, 713; L. J. Andrews and
R. M. Keefer, Molecular Complexes in Organic Chemistry,
Holden-Day, San Francisco, 1964; H. McConnell, J. S. Haw and
R. Platt, J. Phys. Chem., 1953, 21, 66.
23 H. H. Jaffe and M. Orchin, Theory and Applications of Ultraviolet
Spectroscopy, Wiley, New York, 1964; (a) pp. 578–585; (b) pp. 271–
273.
24 (a) O. I. Kachurin and V. M. Belobrov, Ukr. Khim. Zh., 1975, 41,
709; E. M. Arnett, R. P. Quirk and J. J. Burke, J. Am. Chem. Soc.,
1970, 92, 1260; R. C. Paul, K. C. Khanna and K. C. Malhotra,
Res. Bull. Panjab Univ., 1965, 16, 251; R. J. Gillespie and
E. A. Robinson, J. Chem. Soc., 1957, 4233; (b) M. E. Peach and
T. C. Waddington, J. Chem. Soc., 1962, 2680.
25 H. C. Brown and M. Grayson, J. Am. Chem. Soc., 1953, 75, 6285.
26 H. Siegerman, in Technique of Electroorganic Synthesis, vol. V, part
II, ed. N. L. Weinberg, Wiley, New York, 1975, pp. 667.
27 J. E. Page, J. W. Smith and J. G. Weller, J. Phys. Chem., 1949, 53, 545;
S. K. Vijayalakshamma and R. S. Subrahmanya, J. Electroanal.
Chem., 1969, 23, 99.
28 J.O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry,
Plenum Press, New York, p. 906.
29 R. S. Mulliken, J. Am. Chem. Soc., 1952, 74, 811.
30 The three terms are: the ionization energy (I ) for 9,10-
dihydroanthracene (8.56 eV),31 the electron affinity (EA) for
protonated nitrobenzene ( 2.6 eV),32 and the Coulombic energy (C)
of attraction between a positive and a negative ion (0.3 eV).33 The
frequency (ν) for a charge-transfer band at 470 nm is predicted
approximately by the equation, hν = 1 ϩ 2β2/(I Ϫ EA ϩ C); β is a
38 F. H. Herbstein, M. Kapon and G. M. Reisner, Acta Crystallogr.
Sect. B, 1986, 42, 181.
39 L. R. Melby, R. J. Harder, W. R. Hertler, W. Mahler, R. E. Benson
and W. E. Mochel, J. Am. Chem. Soc., 1962, 84, 3374.
20b
40 The heat capacity for nitrobenzene is 186 J molϪ1 KϪ1
.
Heat
content per mole of nitrobenzene heated from 20 to 100 ЊC = 186 ×
80 = 15 kJ molϪ1. This is a minimum value because, in the
experiments described here, the nitrobenzene was always used in
excess as a solvent as well as a reactant.
41 J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron,
K. Draxl and F. H. Field, Ionization Potentials, Appearance
Potentials, and Heats of Formation of Gaseous Positive Ions,
National Bureau of Standards, NSRDS-NBS 26, Washington DC,
1969, cyclohexane 9.86 eV, cyclohexene 8.95 eV, cyclohexadiene
8.4 eV.
42 Y. Zhao and F. G. Bordwell, J. Org. Chem., 1996, 61, 2530.
43 C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 185.
44 R. A. W. Johnstone, M. L. P. G. Nunes, M. M. Pereira,
A. M. d’A Rocha Gonsalves and A. Serra, Heterocycles, 1996, 42,
1423 and references cited therein.
45 (a) M. Orchin and L. Reggel, J. Am. Chem. Soc., 1947, 69, 505;
(b) C. D. Nenitzescu and M. Auram, J. Am. Chem. Soc., 1950, 72,
3486; A. Dansi and M. Reggiani, Gazz. Chim. Ital., 1948, 78, 801.
46 W. P. Jenks, Catalysis in Chemistry and Enzymology, McGraw-Hill,
New York, 1969; A. Fersht, Enzyme Structure and Mechanism,
W. H. Freeman, London, 1979.
47 D. Dolphin, J. Heterocycl. Chem., 1970, 7, 275.
48 D. W. Thomas and A. E. Martell, J. Am. Chem. Soc., 1956, 78, 1335.
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 5 6 5 – 5 7 4
574