T. Michel et al. / Journal of Molecular Catalysis A: Chemical 358 (2012) 159–165
165
Table 3
Hauser, P. Altmann and T. Schröferl are acknowledged for helpful
discussions. T.M. gratefully acknowledges the support of the Grad-
uate School of Chemistry of the Technische Universität München.
Influence of oxidant concentration towards the formation of dipentene dioxide.
Conditions: molar ratio
Yieldmax DPO
Time (h)
(+)-Limonene
MTO
t-Butylpyridine
H2O2
References
100
100
1
1
40
40
300
600
90%
70%
24
24
[1] P. Gallezot, Catal. Today 121 (2007) 76–91.
[2] C. Fischer, Food Flavors: Biology and Chemistry, The Royal Society of Chemistry,
United Kingdom, 1997.
[3] C.S. Sell, The Chemistry of Fragrance: From Perfumer to Consumer, 2nd ed., The
Royal Society of Chemistry, United Kingdom, 2006.
[4] Q.H. Xia, H.-Q. Ge, C.-P. Ye, Z.-M. Li, K.-X. Su, Chem. Rev. 105 (2005)
1603–1662.
[5] N. Mizuno, K. Yamaguchi, K. Kamata, Coord. Chem. Rev. 249 (2005)
1944–1956.
[6] M. Blair, P.C. Andrews, B.H. Fraser, C.M. Forsyth, P.C. Junk, M. Massi, K.L. Tuck,
Synthesis 10 (2007) 1523–1527.
[7] C.M. Byrne, S.D. Allen, E.B. Lobkovsky, G.W. Coates, J. Am. Chem. Soc. 126 (2004)
11404–11405.
[8] T. Kellersohn, Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed., Wiley-
VCG, New-York, 1998.
[9] A. Bordoloi, F. Lefebvre, S.B. Halligudi, J. Mol. Catal. A: Chem. 270 (2007)
177–184.
[10] T. Michel, D. Betz, M. Cokoja, V. Sieber, F.E. Kühn, J. Mol. Catal. A: Chem. 340
(2011) 9–14.
[11] D. Mandelli, M.C.A.v. Vliet, R.A. Sheldon, U. Schuchardt, Appl. Catal. A 219 (2001)
209–213.
[12] N.K.K. Raj, V.G. Puranik, C. Gopinathan, A.V. Ramaswamy, Appl. Catal. A 256
(2003) 265–273.
Fig. 9. Kinetics of the oxidation of (+)-limonene to dipentene dioxide.
[13] M.J.d. Silva, P. Robles-Dutenhefner, L. Menini, E.V. Gusevskaya, J. Mol. Catal. A:
Chem. 201 (2003) 71–77.
[14] A. Asouti, L.P. Hadjiarapoglou, Synlett 12 (2001) 1847–1850.
[15] M. Caovilla, A. Coavilla, S.B.C. Pergher, M.C. Esmelindro, C. Fernandes, C. Dariva,
K. Bernardo-Gusmão, E.G. Oestreicher, O.A.C. Antunes, Catal. Today 133–135
(2008) 695–698.
[16] L. Saikia, D. Srinivas, P. Ratnasamy, Appl. Catal. A 309 (2006) 144–154.
[17] L. Saikia, D. Srinivas, Catal. Today 141 (2009) 66–71.
[18] K.S. Ravikumar, F. Barbier, J.-P. Bégué, D. Bonnet-Delpon, Tetrahedron 54 (1998)
7457–7464.
[19] M. Abrantes, P. Neves, M.M. Antumes, S. Gago, F.A.A. Paz, A.E. Rodrigues, M.
Pillinger, I.S. Gonc¸ alves, C.M. Silva, A.A. Valente, J. Mol. Catal. A: Chem. 320
(2010) 19–26.
As depicted in Fig. 9, the formation of 1,2-limonene oxide is very
fast at the beginning. The yield of 1,2-limonene oxide reaches a
maximum after only 5 min and then decreases significantly during
the first 3 h of the reaction. After 24 h 1,2-limonene oxide is nearly
entirely converted. Dipentene dioxide is obtained in 90% yield and
90% selectivity after 24 h. 2% of the impurities is 1,2-limonene
oxide, the other 8% could not be unambiguously determined.
However, it can reasonably be assumed that the byproducts are
again 8,9-limonene oxide and the corresponding diols of the found
epoxides.
[20] L. Salles, J.-M. Brégeault, R. Thouvenot, C.R. Acad. Sci. Paris, Sériee IIc,
Chimie/Chemistry 3 (2000) 183–187.
[21] R. Saladino, A. Andreoni, V. Neri, C. Crestini, Tetrahedron 61 (2005) 1069–1075.
[22] F.E. Kühn, A. Scherbaum, W.A. Herrmann, J. Organomet. Chem. 689 (2004)
4149–4164.
[23] F.E. Kühn, W.A. Herrmann, Structure and Bonding, vol. 97, Springer Verlag,
Germany, 2000.
[24] S. Yamazaki, Organic Biomol. Chem. 8 (2010) 2377–2385.
[25] H. Rudler, J.R. Gregorio, B. Denise, J.-M. Brégeault, A. Deloffre, J. Mol. Catal. A:
Chem. 133 (1998) 255–265.
[26] R. Saladino, M.C. Ginnasi, D. Collalto, R. Bernini, C. Crestini, Adv. Synth. Catal.
352 (2010) 1284–1290.
[27] W.A. Herrmann, A.M.J. Rost, J.K.M. Mitterpleininger, N. Szesni, S. Sturm, R.W.
Fischer, F.E. Kühn, Angew. Chem. Int. Ed. 46 (2007) 7301–7303.
[28] P. Ferreira, W.-M. Xue, E. Bencze, E. Herdtweck, F.E. Kühn, Inorg. Chem. 40
(2001) 5834–5841.
[29] F.E. Kühn, A.M. Santos, P.W. Roesky, E. Herdtweck, W. Scherer, P. Gisdakis, I.V.
Yudanov, C.D. Valentin, N. Rösch, Chem. Eur. J. 5 (1999) 3603–3615.
[30] M.-D. Zhou, J. Zhao, J. Li, S. Yue, C.-N. Bao, J. Mink, S.-L. Zang, F.E. Kühn, Chem.
Eur. J. 13 (2007) 158–166.
[31] M.-D. Zhou, Y. Yu, A. Capapé, K.R. Jain, E. Herdtweck, X.-R. Li, J. Li, S.-L. Zang, F.E.
Kühn, Chem. Asian J. 4 (2009) 411–418.
[32] M.-D. Zhou, S.-L. Zang, E. Herdtweck, F.E. Kühn, J. Organomet. Chem. 693 (2008)
2473–2477.
4. Conclusion
Optimal conditions for the epoxidation of (+)-limonene
employing MTO as catalyst were established. To reach optimal 1,2-
limonene oxide formation (high activity, selectivity and yield) MTO
has to be applied in not too high concentrations to avoid secondary
reactions of 1,2-limonene oxide (most prominent is diepoxide for-
mation). When the Lewis base ligand/MTO ratio is too high or too
low, byproduct formation also begins to dominate. With low Lewis
base concentrations epoxide ring opening reactions are favored due
to the Lewis acidity of the system. t-Butylpyridine turned out to
be optimal amongst the examined Lewis bases, it applied together
with H2O2 as oxidant in a two phase system with dichloromethane
as organic phase at room temperature (25 ◦C). Under these con-
ditions, the highest selectivity towards 1,2-limonene oxide is
obtained with a ratio of (+)-limonene:MTO:t-butylpyridine:H2O2
of 100:0.5:10:150. Under these conditions 1,2-limonene oxide is
formed in 77% yield with 96% selectivity after 1 h.
[33] A. Capapé, M.-D. Zhou, S.-L. Zang, F.E. Kühn, J. Organomet. Chem. 693 (2008)
3240–3244.
For dipentene dioxide formation, the optimal condition is
reached with a catalyst concentration of 1 mol% with enhanced
ligand and oxidant concentration. The highest yield and selectivity
are obtained with a (+)-limonene:MTO:t-butylpyridine:H2O2 ratio
of 100:1:40:300 at 25 ◦C. Dipentene dioxide is formed under these
conditions in 90% yield and selectivity after 24 h.
[34] P. Altmann, F.E. Kühn, J. Organomet. Chem. 694 (2009) 4032–4035.
[35] W. Adam, C.M. Mitchell, Angew. Chem. Int. Ed. 35 (1996) 533–535.
[36] T.R. Boehlow, C.D. Spilling, Tetrahedron Lett. 37 (1996) 2717–2720.
[37] C.C. Romão, F.E. Kühn, W.A. Herrmann, Chem. Rev. 97 (1997) 3197–3246.
[38] J. Rudolph, K.L. Reddy, J.P. Chiang, K.B. Sharpless, J. Am. Chem. Soc. 119 (1997)
6189–6190.
[39] C. Copéret, H. Adolfsson, K.B. Sharpless, Chem. Commun. (1997) 1565–1566.
[40] W.A. Herrmann, H. Ding, R.M. Kratzer, F.E. Kühn, J.J. Haider, R.W. Fischer, J.
Organomet. Chem. 549 (1997) 319–322.
[41] W.A. Herrmann, R.M. Kratzer, H. Ding, W.R. Thiel, H. Glas, J. Organomet. Chem.
555 (1998) 293–295.
Acknowledgements
[42] S.M. Nabavizadeh, A. Akbari, M. Rashidi, Dalton Trans. (2005) 2423–2427.
[43] H. Wynberg, B. Greijdanus, J. Chem. Soc., Chem. Commun. (1978) 427–428.
[44] W.-D. Wang, J.H. Espenson, J. Am. Chem. Soc. 120 (1998) 11335–11341.
This work was supported by the Fraunhofer-Gesellschaft in the
frame of the project “Stereospecific Epoxidation Of Terpenes”. S.