136
S. Li et al. / Journal of Organometallic Chemistry 730 (2013) 132e136
[4] C.J. Thibodeaux, W.C. Chang, H.W. Liu, Chem. Rev. 112 (2012) 1681e1709.
[5] N. Grover, F.E. Kühn, Curr. Org. Chem. 16 (2012) 16e32.
[6] M. Wu, C. Miao, S. Wang, X. Hu, C. Xia, F.E. Kühn, W. Sun, Adv. Synth. Catal.
353 (2011) 3014e3022.
(1H, s, NH), 8.78, 8.77 (1H, d, Py), 8.39, 8.37 (2H, d, Py), 8.07, 8.06,
8.03 (2H, t, Py), 7.57e7.60 (1H, m, Py), 7.27e7.30 (1H, m, Py), 1.87
(3H, s, MTOeCH3); 13C NMR (d6-DMSO, 100 MHz, r.t.):
[7] D. Betz, P. Altmann, M. Cokoja, W.A. Herrmann, F.E. Kühn, Coord. Chem. Rev.
255 (2011) 1518e1540.
d
(ppm) ¼ 152.73, 149.92, 148.28, 144.87, 138.29, 126.87, 122.53,
119.02, 26.62; MS (CI): m/z ¼ 432.7 [M ꢀ CH3]þ, 234.8 [ReO3]þ,
[8] D. Betz, A. Raith, M. Cokoja, F.E. Kühn, ChemSusChem 3 (2010) 559e562.
[9] K.R. Jain, F.E. Kühn, Dalton Trans. (2008) 2221e2227.
[10] F.E. Kühn, A.M. Santos, M. Abrantes, Chem. Rev. 106 (2006) 2455e2475.
[11] Q.H. Xia, H.Q. Ge, C.P. Ye, Z.M. Liu, K.X. Su, Chem. Rev. 105 (2005) 1603e1662.
[12] W.A. Herrmann, F.E. Kühn, Acc. Chem. Res. 30 (1997) 169e180.
[13] C.C. Romão, F.E. Kühn, W.A. Herrmann, Chem. Rev. 97 (1997) 3197e3246.
[14] K.R. Jain, F.E. Kühn, J. Organomet. Chem. 692 (2007) 5532e5540.
[15] F.E. Kühn, A. Scherbaum, W.A. Herrmann, J. Organomet. Chem. 689 (2004)
4149e4164.
[16] W.A. Herrmann, A.M.J. Rost, J.K.M. Mitterpleininger, N. Szesni, W. Sturm,
R.W. Fischer, F.E. Kühn, Angew. Chem. Int. Ed. 46 (2007) 7301e7303.
[17] E. Tosh, H.K.M. Mitterpleininger, A.M.J. Rost, D. Veljanovski, W.A. Herrmann,
F.E. Kühn, Green Chem. 12 (2007) 1296e1298.
[18] W.A. Herrmann, A.M.J. Rost, E. Tosh, H. Riepl, F.E. Kühn, Green Chem. 10
(2008) 442e446.
[19] M. Carril, P. Altmann, M. Drees, W. Bonrath, T. Netscher, J. Schütz, F.E. Kühn,
J. Catal. 283 (2011) 55e67.
[20] M. Carril, P. Altmann, W. Bonrath, T. Netscher, J. Schütz, F.E. Kühn, Catal. Sci.
Technol. 2 (2012) 722e724.
[21] W.A. Herrmann, F.E. Kühn, C.C. Romão, H. Tran Huy, M. Wang, R.W. Fischer,
P. Kiprof, W. Scherer, Chem. Ber. 126 (1993) 45e50.
[22] F.E. Kühn, J. Mink, W.A. Herrmann, Chem. Ber. 130 (1997) 295e298.
[23] W.A. Herrmann, F.E. Kühn, M.R. Mattner, G.R.J. Artus, M.R. Geisberger,
J.D.G. Correia, J. Organomet. Chem. 538 (1997) 203e209.
[24] J. Rudolph, K.L. Reddy, J.P. Chiang, K.B. Sharpless, J. Am. Chem. Soc. 119 (1997)
6189e6190.
[25] C. Copéret, H. Adolfsson, K.B. Sharpless, Chem. Commun. 16 (1997) 1565e1566.
[26] C. Copéret, H. Adolfsson, T.A.V. Khuong, A.K. Yudin, K.B. Sharpless, J. Org.
Chem. 63 (1998) 1740e1741.
[27] H. Adolfsson, A. Converso, K.B. Sharpless, Tetrahedron Lett. 40 (1999) 3991e3994.
[28] F.E. Kühn, A.M. Santos, P.W. Roesky, E. Herdtweck, W. Scherer, P. Gisdakis,
I.V. Yudanov, C. Di Valentin, N. Rösch, Chem. Eur. J. 5 (1999) 3603e3615.
[29] P. Ferreira, W.M. Xue, É. Bencze, E. Herdtweck, F.E. Kühn, Inorg. Chem. 40
(2001) 5834e5841.
196.8 [M ꢀ MTO]þ.
Compound 5: yellow powder, Yield: 80%. C17H14N3O3Re (495),
elemental analysis: Theory(C:41.29;H:2.85;N:8.50), Found(C:41.11;
H:2.84;N:8.49);IR(KBr,
n
cmꢀ1):3072,1597,1475,1461, 958,929, 761;
1H NMR (d6-DMSO, 400 MHz, r.t.):
d
(ppm) ¼ 13.19 (1H, s, NH), 8.57,
8.56 (1H, d, Py), 8.50, 8.48 (1H, d, Ph), 8.19, 8.16 (1H, d, Ph), 8.09, 8.07
(1H, d, Ph), 7.90, 7.88, 7.86 (1H, t, Ph), 7.78, 7.76 (1H, d, Ph), 7.71, 7.69,
7.67 (1H, t, Ph), 7.64, 7.62 (1H, d, Py), 7.24e7.32 (2H, m, Ph),1.90 (3H, s,
MTOeCH3); 13C NMR (d6-DMSO, 100 MHz, r.t.):
d
(ppm) ¼ 151.09,
149.03, 147.65, 137.90, 130.95, 129.21, 128.70, 128.55, 127.80, 123.37,
119.67, 25.42; MS (CI): m/z ¼ 250.6 [MTO]þ, 245.8 [M ꢀ MTO]þ.
Compound 6: yellow powder, Yield: 84%. C18H16N3O3Re (509),
elemental analysis: Theory (C: 42.51; H: 3.17; N: 8.26), Found (C:
42.18; H: 3.35; N: 7.53); IR (KBr,
n
cmꢀ1): 3063, 1603, 1594, 1511,
1480, 1428, 955, 929, 748; 1H NMR (d6-DMSO, 400 MHz, r.t.):
d
(ppm) ¼ 13.06 (1H, s, NH), 8.55, 8.53 (1H, d, Py), 8.17, 8.15 (1H, d,
Ph), 8.08, 8.06 (1H, d, Py), 7.89, 8.87, 7.85 (1H, t, Ph), 7.70, 7.68, 7.66
(1H, t, Ph), 7.69 (1H, s, Ph), 7.47 (1H, s, Ph), 7.11, 7.09 (1H, d, Ph), 2.46
(3H, s, CH3) 1.91 (3H, s, MTOeCH3); 13C NMR (d6-DMSO, 100 MHz,
r.t.):
d
(ppm) ¼ 150.71, 149.03, 147.55, 137.84, 132.90, 130.93, 129.16,
128.69, 128.50, 127.73, 124.97, 119.63, 25.43, 21.86; MS (CI): m/
z ¼ 509.5 [M]þ, 258.9 [M ꢀ MTO]þ, 250.9 [MTO]þ, 234.9 [ReO3]þ.
Compound 7: orange powder, Yield: 71%. C17H13ClN3O3Re (529),
elemental analysis: Theory (C: 38.60; H: 2.48; N: 7.94), Found (C:
39.20; H: 3.30; N: 6.71); IR (KBr,
n
cmꢀ1): 3062, 1593, 1506, 1471,
1428, 955, 925, 756; 1H NMR (d6-DMSO, 400 MHz, r.t.):
[30] M.D. Zhou, K.R. Jain, A. Günyar, P.N.W. Baxter, E. Herdtweck, F.E. Kühn, Eur. J.
d
(ppm) ¼ 13.37 (1H, s, NH), 8.57, 8.54 (1H, d, Py), 8.19, 8.17 (1H, d,
Inorg. Chem. (2009) 2907e2914.
[31] S.A. Hauser, V. Korinth, E. Herdtweck, M. Cokoja, W.A. Herrmann, F.E. Kühn,
Eur. J. Inorg. Chem. (2010) 4083e4090.
[32] K. Kiersch, Y. Li, K. Junge, N. Szesni, R.W. Fischer, F.E. Kühn, M. Beller, Eur. J.
[33] W.A. Herrmann, J.D.G. Correia, M.U. Rauch, G.R.J. Artus, F.E. Kühn, J. Mol. Catal.
118 (1997) 33e45.
[34] M. Zhou, J. Zhao, J. Li, S. Yue, C. Bao, J. Mink, S. Zang, F.E. Kühn, Chem. Eur. J. 13
(2007) 158e166.
[35] M.D. Zhou, S.L. Zang, E. Herdtweck, F.E. Kühn, J. Organomet. Chem. 693 (2008)
2473e2477.
[36] A. Capapé, M.D. Zhou, S.L. Zang, F.E. Kühn, J. Organomet. Chem. 693 (2008)
3240e3244.
Ph), 8.09, 8.07 (1H, d, Py), 7.90, 8.88, 7.86 (1H, t, Ph), 7.67e7.72 (3H,
m, Ph), 7.27e7.31 (1H, m, Ph), 1.91 (3H, s, MTOeCH3); 13C NMR (d6-
DMSO, 100 MHz, r.t.):
d
(ppm) ¼ 152.43, 151.07, 148.98, 147.66,
138.03, 137.90, 131.03, 130.96, 129.21, 128.70, 128.64, 128.56, 127.96,
127.81, 123.40, 119.67, 25.42; MS (CI): m/z ¼ 529.7 [M]þ, 279.8
[M ꢀ MTO]þ, 250.8 [MTO]þ.
4.4. Catalytic reactions
[37] M.D. Zhou, Y. Yu, A. Capapé, K.R. Jain, E. Herdtweck, X.R. Li, J. Li, S.L. Zhang,
F.E. Kühn, Chem. Asian J. 4 (2009) 411e418.
[38] Z. Xu, M.D. Zhou, M. Drees, H. Chaffey-Millar, E. Herdtweck, W.A. Herrmann,
F.E. Kühn, Inorg. Chem. 48 (2009) 6812e6822.
[39] P. Altmann, M. Cokoja, F.E. Kühn, J. Organomet. Chem. 701 (2012) 51e55.
[40] J. Reedijk (Chapter 13.2), Comprehensive Coordination Chemistry, vol. 2,
Pergamon, Oxford, 1987.
[41] E. Quiroz-Castro, S. Bernès, N. Barba-Behrens, R. Tapia-Benavides, R. Contreras,
H. Nöth, Polyhedron 19 (2000) 1479e1484.
[42] S. Wang, S. Yu, Q. Luo, Q. Wang, J. Shi, Q. Wu, Transit. Met. Chem. 19 (1994)
205e208.
[43] J. Mink, G. Keresztury, A. Stirling, W.A. Herrmann, Spectrochim. Acta Part A 50
(1994) 2039e2057.
[44] L.K. Thompson, B.S. Ramaswamy, E.A. Seymour, Can. J. Chem. 55(1977)878e888.
[45] T.J. Lane, I. Nakagawa, J.L. Walter, A.J. Kandathil, Inorg. Chem. 1 (1962) 267e
276.
[46] M. Ichikawa, S. Nabeya, K. Muraoka, T. Hisano, Chem. Pharm. Bull. 27 (1979)
1255e1264.
All catalytic reactions were carried out under continuous stir-
ring in a glass flask in a water bath at room temperature. General
procedure: 2 mmol of substrate, 1.2 mL of CH2Cl2 and 0.04 mmol of
the catalyst were mixed in a flask. The reaction started when
aqueous H2O2 (35%, 4 mmol, 0.35 mL) was added. The course of the
reaction was monitored by quantitative GC analysis. Samples were
taken at regular time intervals, diluted with n-hexane, then treated
with a catalytic amount of MgSO4 and MnO2 to remove water and
to destroy the excess of peroxide. The resulting slurry was filtered
and the filtrate injected into a GC column. The conversion of
cyclooctene and the formation of the according oxide were calcu-
lated from calibration curves (r2 > 0.999) recorded prior to the
reaction course.
[47] J.R. Sams, T.B. Tsin, J. Chem. Soc. Dalton Trans. (1976) 488e496.
[48] T.A. Kabanos, A.D. Keramidas, D. Mentzafos, U. Russo, A. Terzis, J.M. Tsangaris,
J. Chem. Soc. Dalton Trans. (1992) 2729e2733.
Acknowledgments
[49] A.Tavman, B.Ülküseven, S.Birteksöz, G. Ötük, FoliaMicrobiol. 48 (2003)479e483.
[50] S.M. Nabavizadeh, A. Akbari, M. Rashidi, Dalton Trans. (2005) 2423e2427.
[51] A.E. Ceniceros-Gómez, N. Barba-Behrens, S. Bernès, H. Nöth, S.E. Castillo-Blum,
Inorg. Chem. Acta 304 (2000) 230e236.
SL and BZ thank the TUM graduate School for financial support.
References
[52] M.S. Saraiva, S. Quintal, F.C.M. Portugal, T.A. Lopes, V. Félix, J.M.F. Nogueira,
M. Meireles, M.G.B. Drew, M.J. Calhorda, J. Organomet. Chem. 693 (2008)
3411e3418.
[53] Y. Gao, Y. Zhang, C. Qiu, J. Zhao, Appl. Organometal. Chem. 25 (2011) 54e60.
[54] C.J. Qiu, Y.C. Zhang, Y. Gao, J.Q. Zhao, J. Organomet. Chem. 694(2009)3418e3424.
[55] R. Schiffmann, A. Neugebauer, C.D. Klein, J. Med. Chem. 49 (2006) 511e522.
[1] R.E. Parker, N.S. Isaacs, Chem. Rev. 59 (1959) 737e799.
[2] N. Gharah, S. Chakraborty, A.K. Mukherjee, R. Bhattacharyya, Chem. Commun.
(2004) 2630e2632.
[3] M. Herbert, E. Álvarez, D.J. Cole-Hamilton, F. Montilla, A. Galindo, Chem.
Commun. 546 (2010) 5933e5935.