Inorganic Chemistry
Communication
nitrosyl transformations have only been described so far in
reactions of mononuclear complexes with phosphines.
of the Universities of Oviedo and Santiago de Compostela for
acquisition of diffraction data.
1a
An X-ray study of 5 (Figure 3) confirmed the presence of a
phosphoraniminato ligand [P−N = 1.515(3) Å] symmetrically
REFERENCES
■
(
1) (a) Richter-Addo, G. B.; Legzdins, P. Metal Nitrosyls; Oxford
University Press: Oxford, U.K., 1992. (b) Mingos, D. M. P., Ed. Nitrosyl
Complexes in Inorganic Chemistry, Biochemistry and Medicine.
Structural Bonding; 2014; Vols. 153 and 154.
(2) For some recent reviews, see: (a) Hunt, A. P.; Lehnert, N. Acc.
Chem. Res. 2015, 48, 2117. (b) Tsai, M. L.; Tsou, C. C.; Liaw, W. F. Acc.
Chem. Res. 2015, 48, 1184. (c) Tran, C. T.; Skodje, K. M.; Kim, E. Prog.
Inorg. Chem. 2014, 59, 339. (d) Doctorovich, F.; Bikiel, D. E.; Pellegrino,
J.; Suarez, S. A.; Marti, M. A. Acc. Chem. Res. 2014, 47, 2907. (e) Franke,
A.; van Eldik, R. Eur. J. Inorg. Chem. 2013, 2013, 460. (f) Berto, T. C.;
Speelman, A. M.; Zheng, S.; Lehnert, N. Coord. Chem. Rev. 2013, 257,
2
44.
3) (a) Reduction of Nitrogen Oxide Emissions; Ozkan, U. S., Agarwal, S.
K., Marcelin, G., Eds.; American Chemical Society: Washington, DC,
995. (b) Environmental Catalysis; Armor, J. M., Ed.; American
Chemical Society: Washington, DC, 1994. (c) Catalytic Control of Air
Pollution; Silver, R. G., Sawyer, J. E., Summers, J. C., Eds.; American
Chemical Society: Washington, DC, 1992.
(
Figure 3. ORTEP diagram (30% probability) of compound 5 with H
atoms and Cy and Ph groups (except their C atoms) omitted. Selected
1
1
bond lengths (Å) and angles (deg): Mo1−Mo2 = 2.8778(4); Mo1−N3
=
=
2.131(3); Mo2−N3 = 2.104(3); N3−P2 = 1.515(3); Mo1−Mo2−N2
101.9(1); Mo2−Mo1−N1 = 96.0(1).
(4) (a) Liu, F.; Yu, Y.; He, H. Chem. Commun. 2014, 50, 8445.
(b) Granger, P.; Parvulescu, V. I. Chem. Rev. 2011, 111, 3155. (c) Basu,
S. Chem. Eng. Commun. 2007, 194, 1374. (d) Tayyeb, J. M.; Naseem, I.;
Gibbs, B. M. J. Environ. Manage. 2007, 83, 251. (e) Wallington, T. J.;
Kaiser, E. W.; Farrell, J. T. Chem. Soc. Rev. 2006, 35, 335.
bridging the dimetal center through its N atom and defining a
nearly flat Mo PN core comparable to the one found in the
2
(
5) Alvarez, M. A.; García, M. E.; Martínez, M. E.; Ramos, A.; Ruiz, M.
A. Organometallics 2009, 28, 6293.
6) Alvarez, M. A.; García, M. E.; García-Vivo,
A.; Toyos, A. Inorg. Chem. 2014, 53, 4739.
7) Legzdins, P.; Ross, K. J.; Sayers, S. F.; Rettig, S. J. Organometallics
997, 16, 190.
8) García, M. E.; Riera, V.; Ruiz, M. A.; Rueda, M. T.; Sae
amido complex 4. We should remark that 5 seems to be the first
−
isolated complex with a X PN ligand bearing alkoxy
3
(
́ ́
D.; Melon, S.; Ruiz, M.
substituents. Recently, a mononuclear iron(IV) nitride complex
was reported to react with phosphites to give the corresponding
phosphoraniminato derivatives, although these products were
(
1
16
not actually isolated.
(
́
z, D.
In summary, we have shown that compound 1 displays a
bridging nitrosyl ligand with substantial pyramidalization at the
N atom, likely to drain some electron density away from the
dimetal center, and this increases the basicity of this ligand at the
N site and its ability to transfer its O atom to even mild reducing
reagents, whereby unusual transformations of the bridging
nitrosyl take place under mild conditions. Further work to
explore in more detail the chemistry of 1, as well as that of
electron-richer related complexes, is now in progress.
analytical, spectroscopic, and crystallographic data of complexes 1−5.
(10) (a) Ball, R. G.; Hames, B. W.; Legzdins, P.; Trotter, J. Inorg. Chem.
1
980, 19, 3626. (b) Johnson, B. F. G.; Lewis, J.; Mace, J. M.; Raithby, P.
R.; Stevens, R. E.; Gladfelter, W. L. Inorg. Chem. 1984, 23, 1600.
c) Weiner, W. P.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc.
984, 106, 7462. (d) Kubat-Martin, K. A.; Barr, M. E.; Spencer, B.; Dahl,
L. F. Organometallics 1987, 6, 2570. (e) Mayer, T.; Mayer, P.; Bottcher,
H.-C. J. Organomet. Chem. 2014, 751, 368.
11) DFT calculations were performed with the Gaussian03 program
(
1
̈
(
ASSOCIATED CONTENT
Supporting Information
package using the hybrid method B3LYP, along with the standard 6-
31G* basis set on all atoms except Mo, for which a valence double-ζ-
quality basis set and LANL2DZ effective core potentials were used. See
the SI for further details.
■
*
S
(
12) Mingos, D. M. P. Coord. Chem. Rev. 2015, 293−294, 2 and
references cited therein.
13) García, M. E.; Melon
Organomet. Chem. 2011, 696, 559.
Preparative and spectroscopic data for new compounds
and details of DFT calculations (PDF)
(
́ ̀
, S.; Ruiz, M. A.; Marchio, L.; Tiripicchio, A. J.
(14) (a) Melenkivitz, R.; Hillhouse, G. L. Chem. Commun. 2002, 660.
(b) Sellmann, D.; Gottschalk-Gaudig, T.; Haussinger, D.; Heinemann,
F. W.; Hess, B. A. Chem. - Eur. J. 2001, 7, 2099. (c) Wilson, R. D.; Ibers, J.
A. Inorg. Chem. 1979, 18, 336.
data for compounds 1 and 3−5 (CIF)
AUTHOR INFORMATION
■
(15) (a) Ball, R. G.; Hames, B. W.; Legzdins, P.; Trotter, J. Inorg. Chem.
1
980, 19, 3626. (b) Hames, B. W.; Legzdins, P.; Oxley, C. Inorg. Chem.
1980, 19, 1565.
16) Scepaniak, J. J.; Margarit, C. G.; Harvey, J. N.; Smith, J. M. Inorg.
Chem. 2011, 50, 9508.
*
(
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the DGI of Spain for financial support (Project
CTQ2012-33187) and the Consejeria de Educacion
for a grant (to A.T.). We also thank the CMC of the Universidad
de Oviedo for access to computing facilities, and the X-ray units
■
́
́
de Asturias
C
Inorg. Chem. XXXX, XXX, XXX−XXX