C O MMU N I C A T I O N S
Table 2. Chiral Amplification in Asymmetric Allylation Catalyzed
by Nonracemic Bis-Ti(IV) Oxide 1
discussions. H.H. thanks the Japan Society for the Promotion of
Science for Young Scientists for Research Fellowships.
a
method Cc
method Dc
ee of1b
% eed
% eed
Supporting Information Available: Representative experimental
procedures (PDF). This material is available free of charge via the
Internet at http://pubs.acs.org.
%
% yield
% yield
0
38
50
63
69
84
0
64
87
96
99
70
74
75
75
84
3
23
52
75
99
2
5
7
5
0
5
References
100
(
1) Reviews: (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis;
Wiley: New York, 1993; p 1. (b) Maruoka, K.; Yamamoto, H. In Catalytic
Asymmetric Synthesis; Ojima, I., Ed., VCH: New York, 1993; p 413. (c)
Mikami, K. In AdVances in Catalytic Processes; Doyle, M. P., Ed.; JAI:
Greenwich, 1995; p 1. (d) Hoveyda, A. H.; Morken, J. P. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 1262. (e) Yanagisawa, A. In ComprehensiVe
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer: Berlin, 1999; p 965. (f) Denmark, S. E.; Almstead N. G. In
Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim,
a
Reaction of aldehyde 3 (R ) CH2CH2Ph) and allyltributyltin (1.1 equiv)
was carried out in the presence of nonracemic bis-Ti(IV) oxide 1 (10 mol
b
%
(
) in CH2Cl2 (0.033 M) at 0 °C for 4 h. In the nonracemic binaphthol,
S)-binaphthol was in excess. c For methods C and D, see text. Determined
d
by HPLC analysis using Chiralcel OD.
high yield without any chiral amplification. These results imply
the following important points: (1) symmetric (S,S)-1 and (R,R)-1
are more reactive than meso (S,R)-1 catalyst; (2) bis-Ti(IV) oxide
2
000; p 299. (g) Chemler, S. R.; Roush, W. R. In Modern Carbonyl
Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; p 403.
(
2) (a) Hanawa, H.; Abe, N.; Maruoka, K. Tetrahedron Lett. 1999, 40, 5365.
(b) Abe, N.; Hanawa, H.; Maruoka, K.; Sasaki, M.; Miyashita, M.
Tetrahedron Lett. 1999, 40, 5369.
1
exists as a monomeric species rather than dimeric species in
9
solution; (3) bis-Ti(IV) oxide 1 is coordinatively stable, and no
scrambling was observed between (S,S)-1 and (R,R)-1 under the
reaction conditions.
(
3) Allylation with BINOL/Ti(IV) complexes: (a) Aoki, S.; Mikami, K.;
Terada, M.; Nakai, T. Tetrahedron 1993, 49, 1783. (b) Costa, A. L.; Piazza,
M. G.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Am. Chem. Soc.
1993, 115, 7001. (c) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am.
Several possible reaction pathways have been considered to
account for the activation phenomenon with chiral bis-Ti(IV) oxide
Chem. Soc. 1993, 115, 8467. (d) Keck, G. E.; Geraci, L. S. Tetrahedron
Lett. 1993, 34, 7827. (e) Keck, G. E.; Krishnamurthy, D.; Grier, N. C. J.
Org. Chem. 1993, 58, 6543. (f) Keck, G. E.; Krishnamurthy, D.; Chen,
X. Tetrahedron Lett. 1994, 35, 8323. (g) Faller, J. W.; Sams, D. W.; Liu,
X. J. Am. Chem. Soc. 1996, 118, 1217. (h) Gauthier, D. R., Jr.; Carreira,
E. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2363. (i) Weigand, S.;
Br u¨ ckner, R. Chem. Eur. J. 1996, 2, 1077. (j) Yu, C.-M.; Choi, H.-S.;
Jung, W.-H.; Lee, S.-S. Tetrahedron Lett. 1996, 37, 7095. (k) Yu, C.-M.;
Choi, H.-S.; Jung, W.-H.; Kim, H.-J.; Shin, J. Chem. Commun. 1997, 761.
(l) Yu, C.-M.; Choi, H.-S.; Yoon, S.-K.; Jung, W.-H. Synlett 1997, 889.
10
1
. First, chiral bis-Ti(IV) oxide 1 might not exist as an equilibrium
11
mixture of ((S)-binaphthoxy)TidO (5) and (S)-binaphthoxytita-
nium diisopropoxide (2). It should be noted that (S)-binaphthoxy-
titanium µ-oxo complex 6 showed only low reactivity and selectivity
under similar allylation condition. In addition, Keck’s mono-Ti-
6
12
i
(
4
IV) reagent derived from Ti(OPr ) and (S)-binaphthol (2 equiv)
(
m) Marshall, J. A. Chemtracts 1997, 10, 649. (n) Keck, G. E.; Yu, T.
Org. Lett. 1999, 1, 289. (o) Brenna, E.; Scaramelli, L.; Serra, S. Synlett
000, 357. (p) Kii, S.; Maruoka, K. Tetrahedron Lett. 2001, 42, 1935. (q)
3d
was not generated by method A or B. Therefore, the high reactivity
and selectivity of the chiral bis-Ti(IV) oxide 1 might be ascribed
to the intramolecular coordination of one isopropoxy oxygen to
the other titanium intramolecularly, thereby enhancing the otherwise
weak Lewis acidity of the original Ti(IV) center for the carbonyl
activation as shown in 7. Alternatively, a carbonyl oxygen
coordinates simultaneously to two Ti centers as an intermediate or
as a dynamic species, thereby allowing the strong activation of such
an aldehyde carbonyl as depicted in 8. Although the elucidation of
the most plausible reaction mechanism involving chiral bis-Ti(IV)
catalyst 1 must await further research, the present asymmetric
approach provides a very useful way for obtaining high reactivity
and selectivity by the simple introduction of the M-O-M unit in
the design of chiral Lewis acid catalysts.
2
Hanawa, H.; Kii, S.; Maruoka, K. AdV. Synth. Catal. 2001, 343, 57. For
another Ti-based coordination reagent, see: Mikami, K.; Matsukawa, S.;
Volk, T.; Terada, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 2768.
i
(
(
(
3
4) Synthesis of (Pr O) TiCl: Reetz, M. T.; Steinbach, R.; Kesseler, K. Angew.
Chem., Int. Ed. Engl. 1982, 21, 864.
5) Similar results were obtained by using the supernatant solution of the
chiral bis-Ti(IV) oxide 1 after removal of the precipitated AgCl.
6) (a) Private communication from Professor K. B. Sharpless: Martin, C.
A. Ph.D. Thesis, MIT 1988. (b) Wang, J. T.; Fan, X.; Feng, X.; Qian, Y.
M. Synthesis 1989, 291. (c) Mikami, K. In Encyclopedia of Reagents for
Organic Synthesis; Paquette, L. A., Ed.; Wiley: Chichester, 1995; Vol.
1, p 407.
(7) ((S)-Binaphthoxy)isopropoxytitanium chloride: Seebach, D.; Beck, A. K.;
Roggo, S.; Wonnacott, A. Chem. Ber. 1985, 118, 3673.
(
8) The formation of the Ti-O-Ti unit by these methods was confirmed by
2
reaction of cis-[TiCl
2
(η -guaiacolato)
2
] (2 equiv) with Ag
2
O (1 equiv) in
2
CH Cl to furnish [Ti
2
2
2
(µ-O)Cl
2
(η -guaiacolato) ], which is spectroscopi-
4
cally identical to that by the reported procedure (Sobota, P.; Przybylak,
K.; Utko, J.; Jerzykiewicz, L. B.; Pombeiro, A. J. L.; Guedes da Silva,
M. F. C.; Szczegot, K. Chem. Eur. J. 2001, 7, 951). See also: Terada,
M.; Matsumoto, Y.; Nakamura, Y.; Mikami, K. Inorg. Chim. Acta 1999,
296, 267.
(9) Some chiral BINOL-Ti(IV) complexes exist as dimeric species that exhibit
chiral amplification phenomena. See ref 3g.
(10) For details, see Supporting Information.
(
11) (a) Bradley, B. C.; Gaze, R.; Wardlaw, W. J. Chem. Soc. 1955, 721. (b)
Mukaiyama, T.; Inubushi, A.; Suda, S.; Hara, R.; Kobayashi, S. Chem.
Lett. 1990, 1015.
Acknowledgment. This work was supported by a Grant-in-Aid
for Scientific Research (No. 13853003) from the Ministry of
Education, Culture, Sports, Science and Technology, Japan. We
appreciate Professor K. Mikami for helpful information and
(12) (a) Terada, M.; Mikami, K. J. Chem. Soc., Chem. Commun. 1994, 833.
b) Kitamoto, D.; Imma, H.; Nakai, T. Tetrahedron Lett. 1995, 36, 1861.
(
JA020338O
J. AM. CHEM. SOC.
9
VOL. 125, NO. 7, 2003 1709