6654 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 23
Letters
Supporting Information Available: Synthetic methods and
analytical data for compounds in Table 1, and biological methods
for the Table 1 and Figure 1. This material is available free of
References
(1) Russell, D. W.; Mangelsdorf, D. J. Methods in Enzymology; Vol.
364: Nuclear Receptors, 1st ed.; Academic Press Inc.: London, 2003.
(2) Kliewer, S. A.; Lehmann, J. M.; Willson, T. M. Orphan nuclear
receptors: shifting endocrinology into reverse. Science 1999, 284,
757-760.
(3) Fayard, E.; Auwerx, J.; Schoonjans, K. LRH-1: an orphan nuclear
receptor involved in development, metabolism and steroidogenesis.
Trends Cell Biol. 2004, 14, 250-260.
(4) Val, P.; Lefrancois-Martinez, A.-M.; Veyssiere, G.; Martinez, A. SF-1
a key player in the development and differentiation of steroidogenic
tissues. Nucl. Recept. 2003, 1, 8.
(5) Gu, P.; Goodwin, B.; Chung, A. C. K.; Xu, X.; Wheeler, D. A.;
Price, R. R.; Galardi, C.; Li, P.; Latour, A. M.; Koller, B. H.; Gossen,
J.; Kliewer, S. A.; Cooney, A. J. Orphan nuclear receptor LRH-1 is
required to maintain Oct4 expression at the epiblast stage of
embryonic development. Mol. Cell. Biol. 2005, 25, 3492-3505.
(6) Zhou, J.; Suzuki, T.; Kovacic, A.; Saito, R.; Miki, Y.; Ishida, T.;
Moriya, T.; Simpson, E. R.; Sasano, H.; Clyne, C. D. Interactions
between prostaglandin E-2, liver receptor homologue-1, and aro-
matase in breast cancer. Cancer Res. 2005, 65, 657-663.
(7) Annicotte, J. S.; Chavey, C.; Servant, N.; Teyssier, J.; Bardin, A.;
Licznar, A.; Badia, E.; Pujol, P.; Vignon, F.; Maudelonde, T.;
Lazennec, G.; Cavailles, V.; Fajas, L. The nuclear receptor liver
receptor homolog-1 is an estrogen receptor target gene. Oncogene
2005, 24, 8167-8175.
Figure 1. Agonist activity of 5a in cells: (a) transactivation of a
transiently expressed SHP reporter gene in CV-1 cells; (b) induction
of SHP expression in hepatocytes.
or the presence of polar substituents (e.g., 5t-5v) was poorly
tolerated in both receptors. However, the 1-naphthylamine
substituted analogue (5w) retained some activity on LRH-1 with
functional selectivity over SF-1.
(8) Luo, X.; Ikeda, Y.; Parker, K. L. A cell-specific nuclear receptor is
essential for adrenal and gonadal development and sexual differentia-
tion. Cell 1994, 77, 481-490.
(9) Bakke, M.; Zhao, L.; Hanley, N. A.; Parker, K. L. SF-1: a critical
mediator of steroidogenesis. Mol. Cell. Endocrinol. 2001, 171, 5-7.
(10) Majdic, G.; Young, M.; Gomez-Sanchez, E.; Anderson, P.; Szczepa-
niak, L. S.; Dobbins, R. L.; McGarry, J. D.; Parker, K. L. Knockout
mice lacking steroidogenic factor 1 are a novel genetic model of
hypothalamic obesity. Endocrinology 2002, 143, 607-614.
(11) Zhao, L.; Bakke, M.; Hanley, N. A.; Majdic, G.; Stallings, N. R.;
Jeyasuria, P.; Parker, K. L. Tissue-specific knockouts of steroidogenic
factor 1. Mol. Cell. Endocrinol. 2004, 215, 89-94.
(12) Bavner, A.; Sanyal, S.; Gustafsson, J.-A.; Treuter, E. Transcriptional
corepression by SHP: molecular mechanisms and physiological
consequences. Trends Endocrinol. Metab. 2005, 16, 478-488.
(13) Iyer, A. K.; McCabe, E. R. B. Molecular mechanisms of DAX1
action. Mol. Genet. Metab. 2004, 83, 60-73.
(14) Krylova, I. N.; Sablin, E. P.; Moore, J.; Xu, R. X.; Waitt, G. M.;
MacKay, J. A.; Juzumiene, D.; Bynum, J. M.; Madauss, K.; Montana,
V.; Lebedeva, L.; Suzawa, M.; Williams, J. D.; Williams, S. P.; Guy,
R. K.; Thornton, J. W.; Fletterick, R. J.; Willson, T. M.; Ingraham,
H. A. Structural analyses reveal phosphatidyl inositols as ligands for
the NR5 orphan receptors SF-1 and LRH-1. Cell 2005, 120, 343-
355.
(15) Li, Y.; Choi, M.; Cavey, G.; Daugherty, J.; Suino, K.; Kovach, A.;
Bingham, N. C.; Kliewer, S. A.; Xu, H. E. Crystallographic
identification and functional characterization of phospholipids as
ligands for the orphan nuclear receptor steroidogenic factor-1. Mol.
Cell 2005, 17, 491-502.
(16) Ortlund, E. A.; Lee, Y.; Solomon, I. H.; Hager, J. M.; Safi, R.; Choi,
Y.; Guan, Z. Q.; Tripathy, A.; Raetz, C. R. H.; McDonnell, D. P.;
Moore, D. D.; Redinbo, M. R. Modulation of human nuclear receptor
LRH-1 activity by phospholipids and SHP. Nat. Struct. Mol. Biol.
2005, 12, 357-363.
(17) Wang, W.; Zhang, C.; Marimuthu, A.; Krupka, H. I.; Tabrizizad,
M.; Shelloe, R.; Mehra, U.; Eng, K.; Nguyen, H.; Settachatgul, C.;
Powell, B.; Milburn, M. V.; West, B. L. The crystal structures of
human steroidogenic factor-1 and liver receptor homologue-1. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102, 7505-7510.
(18) Sablin, E. P.; Krylova, I. N.; Fletterick, R. J.; Ingraham, H. A.
Structural basis for ligand-independent activation of the orphan
nuclear receptor LRH-1. Mol. Cell 2003, 11, 1575-1585.
(19) Davis, J. M.; Whitby, R. J.; Jaxachamiec, A. Convergent synthesis
of aminobicyclo[3.3.0]octenes using zirconium chemistry - an
unusual anti-1,3-amine shift. Synlett 1994, 110-112.
We had previously established that LRH-1 regulated the
expression of SHP within an autoregulatory feedback loop to
control cholesterol metabolism in the liver.24 To demonstrate
the cellular activity of the amino-cis-bicyclo[3.3.0]oct-2-enes,
we used a heterologous reporter assay in which cells were
transfected with an expression vector for human LRH-1 and a
reporter construct engineered from the proximal promoter of
the human SHP gene fused to luciferase. Coexpression of the
receptor and reporter gene led to an increase in luciferase due
to the constitutive activity of LRH-1 in the absence of an
exogenous ligand (Figure 1a). However, micromolar concentra-
tions of 5a were able to double the reporter signal in a dose-
responsive manner (EC50 ) ∼1 µM). To further confirm the
functional efficacy of 5a on LRH-1, we treated intact human
liver cells with 10 µM of the compound (Figure 1b). In both
HepG2 cells and primary hepatocytes, a doubling of the
expression of SHP mRNA was measured by quantitative PCR
demonstrating that 5a is a bone fide LRH-1 agonist.
In summary, we have characterized the first small molecule
ligands for the orphan nuclear receptors LRH-1 and SF-1,
including some that show functional selectivity. Compounds
such as 5a (GSK8470) can be used as chemical tools to
investigate the biological function of LRH-1 and SF-1 in cells
and to further define the therapeutic utility of these orphan
receptors. The cis-bicyclo[3.3.0]oct-2-ene skeleton represents
an interesting hydrophobic chemotype for development of new
nuclear receptor ligands due to its rigidity, low molecular weight,
and potential for functionalization at three sites. The primary
limitation of the current 1-anilino series is its acid instability,
with a typical half-life of around 12 h in the presence of 1 M
acetic acid. Importantly, the compounds showed no significant
decomposition upon storage for long periods under neutral
conditions. Studies to identify analogues with improved acid
stability and oral activity are underway.