5
, formed N-protected guanidines require an additional
guanidinylating agents work well in polar media, polystyrene-
based supports were considered unsuitable for this pourpose.
Thus, we have examined the applicability of beaded
10
deprotection step that is associated with workup drawbacks.
A direct synthetic approach should have the advantage of
a quick assembly of the guanidines without using protecting
groups. However, owing to the polarity of the guanidine
group and hence excellent water solubility of organic
materials that bear the guanidine moiety, workup and
separation from byproducts including those derived from the
reagent in Scheme 1 are often cumbersome. Therefore, recent
efforts have been focused on solid-phase-based amidination
techniques.11
1
4
cellulose as the support for this reagent. Cellulose shows
good swelling properties both in polar solvents and water
1
5
and is biodegradable also. Furthermore, the low cost of
the cellulose beads may make it possible to carry out a solid-
phase synthesis on a macro scale also.
Herein, we wish to report a new example of a cellulose-
supported reagent (inspired by compound 3) for the prepara-
tion of an array of guanidines using exclusively EtOH and
The triazene linker developed by Brase offers an elegant
solution to immobilize and modify guanidines on solid
H O as the solvents.
The triazene linker was prepared starting from aniline-
functionalized cellulose 6 with aqueous nitrous acid at 0
°C under classical conditions (Scheme 2). Diazotization
2
12
16
support. In fact the synthesis of a small library of guanidines
1
3
17
on solid support has been described using this linker. In
developing a new strategy for the synthesis of free guanidines,
we pointed out the possibility of developing a new supported
reagent to generate guanidines in solution. As most of the
Scheme 2. Synthesis of Solid-Supported Reagents 8
(5) (a) Callahan, J. F.; Ashton-Shue, D.; Bryan, H. G.; Bryan, W. M.;
Heckman, G. D.; Kinter, L. B.; McDonald, J. E.; Moore, M. L.; Schmidt,
D. B.; Silvestri, J. S.; Stassenh, F. L.; Sulat, L.; Yim, N. C. F.; Huffman,
W. F. J. Med. Chem. 1989, 32, 391-396. (b) Palmer, D. C. O-
Methylisourea. In Encyclopedia of Reagents for Organic Synthesis; Paquette,
L. A., Ed.; Wiley: Sussex, U.K., 1995; pp 3525-3526.
(
6) (a) Bernatowicz, M. S.; Wu, Y. L.; Matsueda, G. R. J. Org. Chem.
1
992, 57, 2497-2502. (b) Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R.
Tetrahedron Lett. 1993, 3389-3392. (c) Drake, B.; Patek, M.; Lebl, M.
Synthesis 1994, 579-582. (d) Bernatowicz, M. S. 1H-Pyrazole-1-carboxa-
midine Hydrochloride. In Encyclopedia of Reagents for Organic Synthesis;
Paquette, L. D., Ed.; Wiley: Sussex, U.K., 1995; pp 4343-4344. (e) Ghosh,
A. K.; Hol, W. G. J.; Fan, E. J. Org. Chem. 2001, 66, 2161-2164. (f)
Powell, D. A.; Philip, D.; Ramsden, P. D.; Batey, R. A. J. Org. Chem.
2
003, 68, 2300-2309 and references therein.
(
7) (a) Bergeron, R. J.; McManis, J. S. J. Org. Chem. 1987, 52, 1700-
1
703. (b) Dumas, D. J. J. Org. Chem. 1988, 53, 4650-4653. (c) Palmer,
D. C. S-Methylisothiourea. In Encyclopedia of Reagents for Organic
Synthesis; Paquette, L. A., Ed.; Wiley: Sussex, U.K., 1996; pp 3523-
3525. (d) Moroni, M.; Kokschy, B.; Osipov, S. N.; Crucianelli, M.; Frigerio,
M.; Bravo, P.; Burger, K. J. Org. Chem. 2001, 66, 130-133.
8) (a) Kim, K. S.; Qian, L. Tetrahedron Lett. 1993, 48, 7677-7680.
b) Jirgensons, A.; Kums, I.; Kauss, V.; Kalvins, I. Synth. Commun. 1997,
in water with HCl/NaNO
bound diazonium salt 7, whereas diazotization with with -
BuONO and boron trifluoride etherate or NOBF
solvents was less successful and resulted in poor yields of
the compound 7.
The attachment of the guanidinylating agent to the
cellulose beads was carried out by shaking at 0 °C a cold
aqueous solution of 1H-pyrazole-1-carboxamidine hydro-
chloride 3 with solid-supported diazonium salt 7 in the
2
leads successfully to the polymer-
(
t
(
2
7, 315-322. (c) Levallet, C.; Lerpiniere, J.; Ko, S. Y. Tetrahedron 1997,
18
4
in organic
5
3, 5291-5304. (d) Cunha, S.; Costa, M. B.; Napolitano, H. B.; Lariucci,
C.; Vencato, I. Tetrahedron 2001, 57, 1671-1675. (e) Zhang, J.; Shi, Y.;
Stein, P.; Atwal, K.; Li, C. Tetrahedron Lett. 2002, 43, 57-59. (f) Yu, Y.;
Ostresh, J. M.; Houghten, R. A. J. Org. Chem. 2002, 67, 3138-3141.
(9) (a) Shibanuma, T.; Shiono, M.; Mukaiyama, T. Chem. Lett. 1977,
5
1
75-578. (b) Yong, Y. F.; Kowalski, J. A.; Lipton, M. A. J. Org. Chem.
997, 62, 1540-1542.
(10) Miel, H.; Rault, S. Tetrahedron Lett. 1997, 38, 7865-7866.
11) (a) Kowalski, J. A.; Lipton, M. A. Tetrahedron Lett. 1996, 37,
(
1
9
5
6
1
1
3
839-5840. (b) Robinson, S.; Roskamp, E. J. Tetrahedron 1997, 53, 6697-
705. (c) Kearney, P. C.; Fernandez, M.; Flygare, J. A. Tetrahedron Lett.
998, 39, 2633-2666. (d) Gelbard, G.; Vielfaure-Joly, F. Tetrahedron Lett.
998, 38, 2743-2746. (e) Lin, P.; Ganesan, A. Tetrahedron Lett. 1998,
9, 9789-9792. (f) Ostrech, J. M.; Schoner, C. C.; Hamashin, V. T.; Nefzi,
3
presence of NaHCO (Scheme 2) for 12 h. As observed
2
0
from elemental analyses, an almost quantitative loading was
achieved using a 4-fold excess of guanidinylating reagents
3
.
A.; Meyer, J.-P.; Houghten, R. A. J. Org. Chem. 1998, 63, 8622-8623.
(g) Yong, Y. F.; Kowalski, J. A.; Thoen, J. C.; Lipton, M. A. Tetrahedron
Lett. 1999, 40, 53-56. (h) Patek, M.; Smrcina, M.; Nakanishi, E.; Izawa,
H. J. Comb. Chem. 2000, 2, 370-377. (i) Jammalamadaka, V.; Berger, J.
G. Synth. Commun. 2000, 30, 2077-2082. (j) Acharya, A. N.; Ostresh, J.
M.; Houghten, R. A. J. Comb. Chem. 2001, 3, 578-589. (k) Sylyok, G. A.
G.; Gibson, C.; Goodman, S. L.; Holzemann, G.; Wiesner, M.; Kessler, H.
J. Med. Chem. 2001, 44, 1938-1950. (l) Ghosh, A. K.; Hol, W. G. J.; Fan,
E. J. Org. Chem. 2001, 66, 2161-2164. (m) Acharya, A. N.; Ostresh, J.
M.; Houghten, R. A. Tetrahedron 2001, 57, 9911-9914. (n) Katritzky, A.
R.; Rogovoy, B. V.; Vvedensky, V.; Kovalenko, K.; Forood, B. J. Comb.
Chem. 2002, 4, 290-294. (o) Corelli, F.; Federico, R.; Cona, A.; Venturini,
G.; Schenone, S.; Botta, M. Med. Chem. ReV. 2002, 11, 309. (p)
Boguszewski, P. A.; Rahman, S. S.; Ganesan, A. J. Comb. Chem. 2004, 6,
(14) (a) De Luca, L.; Giacomelli, G.; Porcheddu, A.; Salaris, M.; Taddei,
M. J. Comb. Chem. 2003, 5, 465-471. (b) Bowman, M. D.; Jeske, R. C.;
Blackwell, H. E. Org. Lett. 2004, 6, 2019-2022.
(15) Chesney, A.; Barwell, P.; Stonehouse, D. F.; Steel, P. G. Green
Chem. 2000, 2, 57-62.
(16) The cellulose employed was a modified bead form containing
aminoaryl-ethyl sulphone groups in flexible chains obtained from Iontosorb,
Czech Republic (Usti nad Labem). The content of amino aryl groups in
Iontosorb AV can be regulated according to the customer’s demands in the
range 0.1-2.8 mmol/g
(17) Covolan, V. L.; Innocentini Mei, L. H.; Rossi, C. L. Polym. AdV.
Technol. 1997, 8, 44-50.
(18) (a) Wannagat, U.; Hohlstein, G. Chem. Ber. 1955, 88, 1839-1846.
(b) Doyle, M. P.; Bryker, W. J. J. Org. Chem. 1979, 44, 1572-1574. (c)
Brase, S.; Kobberling, J.; Enders, D.; Lazny, R., Wang, M.; Brandtner, S.
Tetrahedron Lett. 1999, 40, 2105-2108.
3
2-34 and references therein.
12) (a) Brase, S. Acc. Chem. Res. 2004 (ASAP) and references therein.
b) Gil, C.; Brase, S Curr. Opin. Biol. 2004, 8, 230-237.
13) Dahmen, S.; Brase, S. Org. Lett. 2000, 2, 3563-3565.
(
(
(
4926
Org. Lett., Vol. 6, No. 26, 2004