Inorganic Chemistry
Communication
(
6) Qiu, W.; Xie, X.; Qiu, J.; Fang, W. H.; Liang, R.; Ren, X.; Ji, X.;
(24) Huang, L.; Wu, J.; Han, P.; Al-Enizi, A. M.; Almutairi, T. M.;
Cui, G.; Asiri, A. M.; Cui, G.; Tang, B.; Sun, X. High-performance
Artificial Nitrogen Fixation at Ambient Conditions Using A Metal-
free Electrocatalyst. Nat. Commun. 2018, 9, 3485.
Zhang, L.; Zheng, G. NbO Electrocatalyst Toward 32% Faradaic
2
Efficiency for N Fixation. Small Methods 2019, 3, 1800386.
2
(25) Zhang, X.; Kong, R.; Du, H.; Xia, L.; Qu, F. Highly Efficient
Electrochemical Ammonia Synthesis via Nitrogen Reduction Re-
actions on A VN Nanowire Array under Ambient Conditions. Chem.
Commun. 2018, 54, 5323−5325.
(26) Guo, W.; Liang, Z.; Zhao, J.; Zhu, B.; Cai, K.; Zou, R.; Xu, Q.
Hierarchical Cobalt Phosphide Hollow Nanocages toward Electro-
catalytic Ammonia Synthesis under Ambient Pressure and Room
Temperature. Small Methods 2018, 2, 1800204.
(
7) Cui, X.; Tang, C.; Zhang, Q. A Review of Electrocatalytic
Reduction of Dinitrogen to Ammonia under Ambient Conditions.
Adv. Energy Mater. 2018, 8, 1800369.
(
8) Guo, C.; Ran, J.; Vasileff, A.; Qiao, S. Rational Design of
Electrocatalysts and Photo(electro)Catalysts for Nitrogen Reduction
to Ammonia (NH ) under Ambient Conditions. Energy Environ. Sci.
3
2
(
018, 11, 45−56.
9) Shipman, M. A.; Symes, M. D. Recent Progress Towards the
(27) Wang, T.; Xia, L.; Yang, J.; Wang, H.; Fang, W.; Chen, H.;
Electrosynthesis of Ammonia from Sustainable Resources. Catal.
Today 2017, 286, 57−68.
Tang, D.; Asiri, A. M.; Luo, Y.; Cui, G.; Sun, X. Electrocatalytic N -to-
2
NH3 Conversion by Oxygen-Doped Graphene: Experimental and
Theoretical Studies. Chem. Commun. 2019, 55, 7502−7505.
(28) Chen, S.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D.;
Centi, G. Electrocatalytic Synthesis of Ammonia at Room Temper-
ature and Atmospheric Pressure from Water and Nitrogen on a
Carbon-Nanotube-Based Electrocatalyst. Angew. Chem., Int. Ed. 2017,
56, 2699−2703.
(
10) Shi, M.; Bao, D.; Wulan, B.; Li, Y.; Zhang, Y.; Yan, J.; Jiang, Q.
Au Sub-nanoclusters on TiO Toward Highly Efficient and Selective
2
Electrocatalyst for N Conversion to NH at Ambient Conditions.
2
3
Adv. Mater. 2017, 29, 1606550.
(
11) Kugler, K.; Luhn, M.; Schramm, J. A.; Rahimi, K.; Wessling, M.
Galvanic Ddeposition of Rh and Ru on Rrandomly Structured Ti
Felts for the Electrochemical NH Synthesis. Phys. Chem. Chem. Phys.
(29) Yu, J.; Li, C.; Li, B.; Zhu, X.; Zhang, R.; Ji, L.; Tang, D.; Asiri,
3
2
(
015, 17, 3768−3782.
A. M.; Sun, X.; Li, Q.; Liu, S.; Luo, Y. A Perovskite La Ti O
2 2 7
12) Liu, H.; Han, S.; Zhao, Y.; Zhu, Y.; Tian, X.; Zeng, J.; Jiang, J.;
Nanosheet as an Efficient Electrocatalyst for Artificial N Fixation to
2
Xia, B.; Chen, Y. Surfactant-free Atomically Ultrathin Rhodium
Nanosheet Nanoassemblies for Efficient Nitrogen Electroreduction. J.
Mater. Chem. A 2018, 6, 3211−3217.
NH in Acidic Media. Chem. Commun. 2019, 55, 6401−6404.
3
(30) Chen, H.; Zhu, X.; Huang, H.; Wang, H.; Wang, T.; Zhao, R.;
Zheng, H.; Asiri, A. M.; Luo, Y.; Sun, X. Sulfur Dots-Graphene
Nanohybrid: A Metal−Free Electrocatalyst for Efficient N -to-NH
(
13) Huang, H.; Xia, L.; Shi, X.; Asiri, A. M.; Sun, X. Ag Nanosheets
2
3
for Efficient Electrocatalytic N2 fixation to NH3 under Ambient
Fixation at Ambient Conditions. Chem. Commun. 2019, 55, 3152−
3155.
(31) Lv, C.; Yan, C.; Chen, G.; Ding, Y.; Sun, J.; Zhou, Y.; Yu, G. An
Amorphous Noble-Metal-Free Electrocatalyst that Enables Nitrogen
Fixation under Ambient Conditions. Angew. Chem., Int. Ed. 2018, 57,
6073−6076.
Conditions. Chem. Commun. 2018, 54, 11427−11430.
(
14) Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H.; Feng, X. Ambient
Ammonia Synthesis via Palladium-catalyzed Electrohydrogenation of
Dinitrogen at Low Overpotential. Nat. Commun. 2018, 9, 1795.
(
15) Liu, Y.; Han, M.; Xiong, Q.; Zhang, S.; Zhao, C.; Gong, W.;
Wang, G.; Zhang, H.; Zhao, H. Dramatically Enhanced Ambient
(32) Yang, X.; Nash, J.; Anibal, J.; Dunwell, M.; Kattel, S.; Stavitski,
E.; Attenkofer, K.; Chen, J. G.; Yan, Y.; Xu, B. Mechanistic Insights
into Electrochemical Nitrogen Reduction Reaction on Vanadium
Nitride Nanoparticles. J. Am. Chem. Soc. 2018, 140, 13387−13391.
(33) Li, X.; Li, T.; Ma, Y.; Wei, Q.; Qiu, W.; Guo, H.; Shi, X.; Zhang,
P.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. Boosted Electrocatalytic
N Reduction to NH by Defect-Rich MoS Nanoflower. Adv. Energy
Ammonia Electrosynthesis Performance by In-Operando Created Li−
S Interactions on MoS Electrocatalyst. Adv. Energy Mater. 2019, 9,
2
1
(
803935.
16) Xia, L.; Wu, X.; Wang, Y.; Niu, Z.; Liu, Q.; Li, T.; Shi, X.; Asiri,
A. M.; Sun, X. S-Doped Carbon Nanospheres: An Efficient
Electrocatalyst toward Artificial N Fixation to NH . Small Methods
2
3
2
3
2
2
(
018, 14, 1800251.
17) Zhang, X.; Wu, T.; Wang, H.; Zhao, R.; Chen, H.; Wang, T.;
Wei, P.; Luo, Y.; Zhang, Y.; Sun, X. Boron Nanosheet: An Elemental
D Material for Ambient Electrocatalytic N -to-NH Fixation in
Mater. 2018, 8, 1801357.
(34) Zhang, Y.; Qiu, W.; Ma, Y.; Luo, Y.; Tian, Z.; Cui, G.; Xie, F.;
Chen, L.; Li, T.; Sun, X. High-performance Electrohydrogenation of
N to NH Catalyzed by Multishelled Hollow Cr O Microspheres
2
2
3
2
3
2
3
Neutral Media. ACS Catal. 2019, 9, 4609−4615.
under Ambient Conditions. ACS Catal. 2018, 8, 8540−8544.
(35) Han, J.; Liu, Z.; Ma, Y.; Cui, G.; Xie, F.; Wang, F.; Wu, Y.; Gao,
S.; Xu, Y.; Sun, X. Ambient N2 Fixation to NH3 at Ambient
Conditions: Using Nb O Nanofiber as A High-performance
Electrocatalyst. Nano Energy 2018, 52, 264−270.
(36) Kong, J.; Lim, A.; Yoon, C.; Jang, J. H.; Ham, H. C.; Han, J.;
Nam, S.; Kim, D.; Sung, Y.; Choi, J.; Park, H. S. Electrochemical
(
18) Hu, L.; Khaniya, A.; Wang, J.; Chen, G.; Kaden, W. E.; Feng, X.
Ambient Electrochemical Ammonia Synthesis with High Selectivity
on Fe/Fe Oxide Catalyst. ACS Catal. 2018, 8, 9312−9319.
2
5
(
19) Zhang, S.; Zhao, C.; Liu, Y.; Li, W.; Wang, J.; Wang, G.; Zhang,
Y.; Zhang, H.; Zhao, H. Cu Doping in CeO to form Multiple Oxygen
2
Vacancies for Dramatically Enhanced Ambient N2 Reduction
Performance. Chem. Commun. 2019, 55, 2952−2955.
Synthesis of NH at Low Temperature and Atmospheric Pressure
3
(
20) Du, H.; Guo, X.; Kong, R.; Qu, F. Cr O Nanofiber: A High-
using A γ-Fe O Catalyst. ACS Sustainable Chem. Eng. 2017, 5,
2
3
2
3
performance Electrocatalyst toward Artificial N2 Fixation to NH3
10986−10995.
under Ambient Conditions. Chem. Commun. 2018, 54, 12848−12851.
(37) Zhu, X.; Wu, T.; Ji, L.; Li, C.; Wang, T.; Wen, S.; Gao, S.; Shi,
X.; Luo, Y.; Peng, Q.; Sun, X. Ambient Electrohydrogenation of N2
(
21) Zhang, X.; Liu, Q.; Shi, X.; Asiri, A. M.; Luo, Y.; Sun, X.; Li, T.
TiO Nanoparticles−reduced Graphene Oxide Hybrid: An Efficient
for NH Synthesis on Non-Metal Boron Phosphide Nanoparticles: the
Critical Role of P to Boost the Catalytic Activity. J. Mater. Chem. A
2
3
and Durable Electrocatalyst toward Artificial N Fixation to NH
2
3
under Ambient Conditions. J. Mater. Chem. A 2018, 6, 17303−17306.
2019, 7, 16117.
(
22) Zhu, X.; Liu, Z.; Liu, Q.; Luo, Y.; Shi, X.; Asiri, A. M.; Wu, Y.;
(38) Zhu, X.; Wang, H.; Liu, Z.; Zhao, R.; Chen, H.; Wang, T.;
Wang, F.; Luo, Y.; Wu, Y.; Sun, X. Boosting Electrocatalytic N2
Reduction to NH3 on β-FeOOH by Fluorine Doping. Chem.
Commun. 2019, 55, 3987−3990.
(39) Lee, J. W.; Hall, A. S.; Kim, J. D.; Mallouk, T. E. A Facile and
Template-free Hydrothermal Synthesis of Mn O nanorods on
Sun, X. Efficient and Durable N Reduction Electrocatalysis under
2
Ambient Conditions: β-FeOOH Nanorods as A Non-noble-metal
Catalyst. Chem. Commun. 2018, 54, 11332−11335.
(
23) Zhang, L.; Ren, X.; Luo, Y.; Shi, X.; Asiri, A. M.; Li, T.; Sun, X.
Ambient NH Synthesis via Electrochemical Reduction of N over
3
2
3
4
Cubic Sub-micron SnO Particles. Chem. Commun. 2018, 54, 12966−
Graphene Sheets for Supercapacitor Electrodes with Long Cycle
Stability. Chem. Mater. 2012, 24, 1158−1164.
2
1
2969.
D
Inorg. Chem. XXXX, XXX, XXX−XXX