Communication
mechanism would explain the enantiospecificity of the reaction of Education, Culture and Science (Gravity program 024.001.035
in the case of trapping of protons and the loss of it for external to S. R. H.) is acknowledged. J. M. P. thanks to the European
electrophiles. In the latter case the pentacoordinate silicon in- Commission for an Intra-European Marie Curie fellowship (grant
termediate would evolve to the chiral carbanion which would 746011 - ChirPyr). This research received further support from
quickly racemize and thus the product of the trapping would NWO in the framework of the Fund New Chemical Innovations
lose the enantioenrichment (Scheme 4).[6b]
(NWO Project Nr. 731.014.209).
Keywords: Synthetic methods · Rearrangement ·
Hydroxysilanes · Enantiospecific · Chirality
[1] A. G. Brook, Acc. Chem. Res. 1974, 7, 77–84.
[2] a) W. H. Moser, Tetrahedron 2001, 57, 2065–2084; b) A. B. Smith III, W. M.
Wuest, Chem. Commun. 2008, 5883–5895; c) G. Eppe, D. Didier, I. Marek,
Chem. Rev. 2015, 115, 9175–9206.
[3] a) M. Leibeling, K. A. Shurrush, V. Werner, L. Perrin, I. Marek, Angew. Chem.
Int. Ed. 2016, 55, 6057–6061; Angew. Chem. 2016, 128, 6161; b) J. F. Colla-
dos, P. Ortiz, S. R. Harutyunyan, Eur. J. Org. Chem. 2016, 2016, 3065–3069.
[4] a) M. Sasaki, Y. Kondo, M. Kawahata, K. Yamaguchi, K. Takeda, Angew.
Chem. Int. Ed. 2011, 50, 6375–6378; Angew. Chem. 2011, 123, 6499; b) P.
Smirnov, J. Mathew, A. Nijs, E. Katan, M. Karni, C. Bolm, Y. Apeloig, I.
Marek, Angew. Chem. Int. Ed. 2013, 52, 13717–13721; Angew. Chem.
2013, 125, 13962.
Scheme 4. Proposed mechanism for the stereospecific protonation of tertiary
benzylic α-hydroxysilane 1a.
Conclusions
[5] a) D. A. Nicewicz, C. M. Yates, J. S. Johnson, Angew. Chem. Int. Ed. 2004,
43, 2652–2655; Angew. Chem. 2004, 116, 2706; b) D. A. Nicewicz, C. M.
Yates, J. S. Johnson, J. Org. Chem. 2004, 69, 6548–6555.
[6] a) A. G. Brook, J. D. Pascoe, J. Am. Chem. Soc. 1971, 93, 6224–6227; b)
M. S. Biernbaum, H. S. Mosher, J. Am. Chem. Soc. 1971, 93, 6221–6223.
[7] a) A. Wright, R. West, J. Am. Chem. Soc. 1974, 96, 3214–3222; b) A. Wright,
R. West, J. Am. Chem. Soc. 1974, 96, 3227–3232.
[8] a) S. R. Wilson, M. S. Hague, R. N. Misra, J. Org. Chem. 1982, 47, 747–748;
b) P. F. Hudrlik, A. M. Hudrlik, A. K. Kulkarni, J. Am. Chem. Soc. 1982, 104,
6809–6811.
[9] J. Rong, R. Oost, A. Desmarchelier, A. J. Minnaard, S. R. Harutyunyan,
Angew. Chem. Int. Ed. 2015, 54, 3038–3042; Angew. Chem. 2015, 127,
3081.
In summary, we have explored the Brook rearrangement of sim-
ple, chiral tertiary benzylic α-hydroxysilanes. We have demon-
strated that the rearrangement followed by proton trapping is
enantiospecific and proceeds with inversion of the configura-
tion at the carbon center analogously to their secondary coun-
terparts. Moreover, we have found that a catalytic amount of
base is not only sufficient, but beneficial for the enantiospecific-
ity of the process. Importantly, the [1,2]-Brook rearrangement
can be followed by trapping of methyl or allyl electrophiles
even in a protic environment, however, in all cases with minimal
retention of chirality.
[10] M. Bandini, A. Bottoni, P. G. Cozzi, G. P. Miscione, M. Monari, R. Pierciac-
cante, A. Umani-Ronchi, Eur. J. Org. Chem. 2006, 4596–4608.
[11] a) T. B. Freedman, X. Cao, R. K. Dukor, L. A. Nafie, Chirality 2003, 15, 743–
758; b) Y. He, B. Wang, R. K. Dukor, L. A. Nafie, Appl. Spectrosc. 2011, 65,
699–723.
Acknowledgments
Financial support from The Netherlands Organization for Scien-
tific Research (NWO-Vidi and ECHO to S. R. H.) and the Ministry
Received: October 20, 2017
Eur. J. Org. Chem. 0000, 0–0
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim