8486
S. Kumar et al. / Tetrahedron Letters 47 (2006) 8483–8487
R
R
32, 170–180; (c) Duxbury, D. F. Chem. Rev. 1993, 93, 381–
33.
4
O
N
N
O
2
. (a) Abarca, B.; Asensio, G.; Ballesteros, R.; Varea, T. J.
Org. Chem. 1991, 56, 3224–3229; (b) Nair, V.; Abhilash,
K. G.; Vidya, N. Org. Lett. 2005, 7, 5857–5859; (c) Reese,
C. B.; Yan, H. Tetrahedron Lett. 2001, 42, 5545–5547; (d)
Chakrabarty, M.; Sarkar, S. Tetrahedron Lett. 2002, 43,
HN
NH
O
O
H
H
O
N
O
O
O
O
(
i)
HN
+
1
351–1353; (e) Noack, A.; Schroder, A.; Hartmann, H.
O
HN
NH
Dyes Pigments 2002, 57, 131–147.
R
3. Yamato, M.; Hashigaki, K.; Yasumoto, Y.; Sakai, J.;
Luduena, R. F.; Banerjee, A.; Tsukagoshi, S.; Tashiro, T.;
Tsuruo, T. J. Med. Chem. 1987, 30, 1897–1900.
4. (a) Kandela, I. K.; Bartlett, J. A.; Indig, G. L. Photochem.
Photobiol. Sci. 2002, 1, 309–314; (b) Cho, B. P.; Yang, T.;
Blankenship, L. R.; Moody, J. D.; Churchwell, M.;
Beland, F. A.; Culp, S. J. Chem. Res. Toxicol. 2003, 16,
285–294.
. (a) Kimura, K.; Mizutani, R.; Yokoyama, M.; Arakawa,
R.; Matsubayashi, G.-E.; Okamoto, M.; Doe, H. J. Am.
Chem. Soc. 1997, 119, 2062–2063; (b) Kimura, K.;
Kaneshige, M.; Yokoyama, M. Chem. Mater. 1995, 7,
945–950.
O
N
N
O
1
a, 1c, 1d, 1e
5
O
N
O
H
R
R
6
a, 6c, 6d, 6e
R
N
(
i)
(
i)
O
O
R
9
7
H
R
R
R
5
6
7
O
O
N
N
O
N
HN
O
N
N
R
R
R
R
N
O
O
O
O
O
. (a) Matsumoto, K.; Nakaminami, H.; Sogabe, M.; Kurata,
H.; Oda, M. Tetrahedron Lett. 2002, 43, 3049–3052; (b)
Nair, V.; Thomas, S.; Mathew, S. C. Org. Lett. 2004, 6,
N
O
OO
N
H
HN
NH
N
R
N
R
R
3
513–3515; (c) Nair, V.; Thomas, S.; Mathew, S. C.; Vidya,
O
N
O
O
N
N
O
N.; Rath, N. P. Tetrahedron 2005, 61, 9533–9540.
. (a) Kurata, H.; Nakaminami, H.; Matsumoto, K.;
Kawasa, T.; Oda, M. Chem. Commun. 2001, 529–530;
R
R
8
a, 8c, 8d, 8e
10a, 10c, 10d, 10e
(
b) Rudzevich, Y.; Rudzevich, V.; Sehollmeyer, D.;
Scheme 3. In 6, 8, 10: a, R = C
R = CH (CH CH ; e, R = CH
i) HBr–acetic acid (33%); 120 ꢁC.
6
H
5
; c, R = CH
2 2 5 3
(CH ) CH ; d,
Thondorf, I.; Bohmer, V. Org. Lett. 2005, 7, 613–616.
8. Watson, J. D.; Crick, F. H. Nature 1953, 171, 737.
9. (a) Sessler, J. L.; Jayawickramarajah, J. Chem. Commun.
2
2
)
9
3
2
2
(CH )
15CH . Reagent and condition:
3
(
2
005, 1939–1949; (b) Sherrington, D. C.; Taskinen, K. A.
with 1a in HBr–acetic acid resulted in deformylation of
the aldehyde and the respective di(uracilyl) anthracenyl
methane was not isolated.
Chem. Soc. Rev. 2001, 30, 83; (c) Conn, M. M.; Rebek, J.,
Jr. Chem. Rev. 1997, 97, 1647; (d) Rauter, H.; Hillgeris, E.
C.; Erxleben, A.; Lippert, B. J. Am. Chem. Soc. 1994, 116,
6
16–624; (e) Navarro, J. A. R.; Janik, M. B. L.; Freisinger,
E.; Lippert, B. Inorg. Chem. 1999, 38, 426–432; (f) Lippert,
B. Coord. Chem. Rev. 2000, 200–202, 487–516; (g) Hocek,
M.; Stara, I. G.; Dvorakova, H. Tetrahedron Lett. 2001,
The reactions of 1-alkyluracils with terephthaldehdye
gave 1,4-bis[di(uracilyl)methyl]benzenes 6a and 6c–e.
Similarly, reaction of isophthaldehyde with 1-alkyl-
uracils gave 1,3-bis[di(uracilyl)methyl]benzenes 8a and
4
2, 519–521; (h) Havelkova, M.; Dvorak, D.; Hocek, M.
Tetrahedron 2002, 58, 7431–7435.
8
c–e. The presence of an alkyl substituent at N-3 of ura-
10. Mcfail-Isom, L.; Shui, X.; Williams, L. D. Biochemistry
1998, 37, 17105–17111.
11. Tominaga, M.; Konishi, K.; Aida, T. J. Am. Chem. Soc.
cil did not affect its reactivity towards aryl dialdehydes.
The condensation of 1,3-dialkyluracils (9) with terephth-
aldehyde gave compounds 10a and10c–e (Scheme 3).
1
999, 121, 7704.
1
2. (a) Lam, B. L.; Pridgen, L. N. J. Org. Chem. 1986, 51,
2592–2594; (b) Kinoshita, T.; Konodo, M.; Tanaka, H.;
Furukawa, S. Synthesis 1986, 859–862.
Thus, the condensation of readily available14 1-alkyl-,
and 1,3-dialkyluracil derivatives with aromatic alde-
hydes and dialdehydes provides a versatile approach
for the synthesis of di(uracilyl)aryl methanes and their
homologues Significantly, their synthesis in multigram
quantities, ease of purification through crystallization
and their high yields are advantages.
1
3. General procedure: 1-alkyl- or 1,3-dialkyl uracil derivatives
1
were heated in an oil bath at 120 ꢁC with the aryl
aldehyde (0.5 equiv) (3) or 1,x-dialdehyde (0.25 equiv) (5
or 7) in HBr–acetic acid (33%). On completion, the
reaction mixture was cooled to room temp. and was
poured onto ice. The solid that separated was filtered and
was crystallized from CH
afford pure compounds.
3 3
CN or CH CN–ethanol to
Acknowledgement
Di(uracilyl)methane 2c, white solid; 70%; mp 83 ꢁC
+ + 1
(
CH
(300 MHz, CDCl
.28 (br s, 24H, 12 · CH ), 3.27 (s, 2H, C5-CH ), 3.69 (t,
3
CN); FAB mass M m/z 460 (M ); H NMR
We thank the CSIR and the DST, New Delhi (FIST and
project SR/SI/OC-08/2003), for financial assistance.
3
): d 0.88 (t, J = 6.9 Hz, 6H, 2 · CH ),
3
1
2
2
J = 6.9 Hz, 4H, 2 · N1–CH
2
), 7.43 (s, 2H, C6-H), 8.78 (s,
H, 2 · NH); C NMR (normal/DEPT-135) (75 MHz,
CDCl ): d 14.1 (+ve, CH
1
3
2
3
3
), 22.6 (Àve, CH ), 23.6 (Àve,
2
References and notes
CH ), 26.4 (Àve, CH ), 29.1 (Àve, CH ), 31.7 (Àve, CH ),
2
2
2
2
4
1
8
8.8 (Àve, CH
2
), 110.4 (absent, ArC), 143.3 (+ve, C6-H),
1
. Recent reviews: (a) Nair, V.; Thomas, S.; Mathew, S. C.;
Abhilash, K. G. Tetrahedron 2006, 62, 6731–6747; (b)
Shchepinov, M. S.; Korshun, V. A. Chem. Soc. Rev. 2003,
50.7 (absent, CO), 164.2 (absent, CO). Found C 65.28; H
.70; N 12.10. C H N O requires C 65.19, H 8.75; N
25 40
4
4