Inorganic Chemistry
Article
L.; Powers, D. C.; Maher, A. G.; Hadt, R. G.; Nocera, D. G. Halogen
Photoelimination from Monomeric Nickel(III) Complexes Enabled by
the Secondary Coordination Sphere. Organometallics 2015, 34, 4766−
4774.
(6) Iluc, V. M.; Miller, A. J. M.; Anderson, J. S.; Monreal, M. J.;
Mehn, M. P.; Hillhouse, G. L. Synthesis and characterization of three-
coordinate Ni(III)-imide complexes. J. Am. Chem. Soc. 2011, 133,
13055−13063.
of paramagnetic and diamagnetic trianions. Angew. Chem., Int. Ed.
2002, 41 (20), 3873−3876. (c) Tondreau, A. M.; Stieber, S. C. E.;
Milsmann, C.; Lobkovsky, E.; Weyhermuller, T.; Semproni, S. P.;
Chirik, P. J. Oxidation and Reduction of Bis(imino)pyridine Iron
Dinitrogen Complexes: Evidence for Formation of a Chelate Trianion.
Inorg. Chem. 2013, 52 (2), 635−646. (d) Rajpurohit, J.; Maheswaran,
S. Molecular and Electronic Structure of an Unusual Cobalt NNO
(12) (a) van de Kuil, L. A.; Veldhuizen, Y. S. J.; Grove, D. M.;
Zwikker, J. W.; Jenneskens, L. W.; Drenth, W.; Smeets, W. J. J.; Spek,
A. L.; van Koten, G. A novel enantiopure proline-based organonickel-
(III) halide monocation with a pentadentate C, N2, O2-bonded
bis(ortho-chelating) aryldiamine ligand. J. Organomet. Chem. 1995,
488, 191−197. (b) Spasyuk, D. M.; Zargarian, D.; van der Est, A. New
POCN-Type Pincer Complexes of Nickel(II) and Nickel(III).
Organometallics 2009, 28, 6531−6540.
(13) Jurca, T.; Dawson, K.; Mallov, I.; Burchell, T.; Yap, G. P. A.;
Richeson, D. S. Disproportionation and radical formation in the
coordination of ″GaI″ with bis(imino)pyridines. Dalton Trans. 2010,
39, 1266−1272.
(14) (a) Stoll, S.; Schweiger, A. EasySpin, a comprehensive software
package for spectral simulation and analysis in EPR. J. Magn. Reson.
2006, 178, 42−55. (b) Hemminga, M. A., Berliner, L. J., Eds., ESR
Spectroscopy in Membrane Biophysics. (Biological Magnetic Resonance,
Vol. 27); 2007; p 379.
(7) (a) Grove, D. M.; Van Koten, G.; Zoet, R.; Murrall, N. W.;
Welch, A. J. Unique stable organometallic nickel(III) complexes;
syntheses and the molecular structure of [Ni[C6H3(CH2NMe2)2-
2,6]I2]. J. Am. Chem. Soc. 1983, 105, 1379−1380. (b) Bencini, A.;
Fabbrizzi, L.; Poggi, A. Formation of nickel(III) complexes with n-
dentate amine macrocycles (n = 4, 5, 6). ESR and electrochemical
studies. Inorg. Chem. 1981, 20, 2544−2549. (c) Grove, D. M.; Van
Koten, G.; Mul, P.; Zoet, R.; Van der Linden, J. G. M.; Legters, J.;
Schmitz, J. E. J.; Murrall, N. W.; Welch, A. J. Syntheses and
characterization of unique organometallic nickel(III) aryl species. ESR
and electrochemical studies and the x-ray molecular study of square-
pyramidal [Ni33I2]. Inorg. Chem. 1988, 27, 2466−2473. (d) Tang, F.;
Rath, N. P.; Mirica, L. M. Stable bis(trifluoromethyl)nickel(III)
complexes. Chem. Commun. 2015, 51, 3113−3116.
(8) (a) Cao, T.-P.-A.; Nocton, G.; Ricard, L.; Le Goff, X. F.; Auffrant,
A. A Tetracoordinated Phosphasalen Nickel(III) Complex. Angew.
Chem., Int. Ed. 2014, 53, 1368−1372. (b) Blake, A. J.; Gould, R. O.;
Halcrow, M. A.; Holder, A. J.; Hyde, T. I.; Schroder, M. Nickel
thioether chemistry: a re-examination of the electrochemistry of
[Ni([9]aneS3)2]2+. The single-crystal x-ray structure of a nickel(III)
thioether complex, [NiIII([9]aneS3)2][H5O2]2[ClO4]6 ([9]aneS3 =
1,4,7-trithiacyclononane). J. Chem. Soc., Dalton Trans. 1992, 3427−
3431. (c) Chiu, C.-T.; Chen, D.-H. One-step hydrothermal synthesis
of threedimensional porous Ni-Co sulfide/reduced graphene oxide
composite with optimal incorporation of carbon nanotubes for high
performance supercapacitors. Nanotechnology 2018, 29, 175602/
175601−175602/175612. (d) Xiao, Z.; Patrick, B. O.; Dolphin, D.
Ni(III) Complex of an N-Confused Porphyrin Inner C-Oxide. Inorg.
Chem. 2003, 42, 8125−8127. (e) Stalick, J. K.; Ibers, J. A. Five-
coordinate nickel(III). Crystal and molecular structure of
NiBr3(PPhMe2)20.5 NiBr2(PPhMe2)2C6H6. Inorg. Chem. 1970, 9,
453−458. (f) Collins, T. J.; Nichols, T. R.; Uffelman, E. S. A square-
planar nickel(III) complex of an innocent ligand system. J. Am. Chem.
Soc. 1991, 113, 4708−4709. (g) Watson, M. B.; Rath, N. P.; Mirica, L.
M. Oxidative C-C Bond Formation Reactivity of Organometallic
Ni(II), Ni(III), and Ni(IV) Complexes. J. Am. Chem. Soc. 2017, 139,
35−38. (h) Schultz, J. W.; Fuchigami, K.; Zheng, B.; Rath, N. P.;
Mirica, L. M. Isolated Organometallic Nickel(III) and Nickel(IV)
Complexes Relevant to Carbon-Carbon Bond Formation Reactions. J.
Am. Chem. Soc. 2016, 138, 12928−12934. (i) Zhou, W.; Zheng, S.;
Schultz, J. W.; Rath, N. P.; Mirica, L. M. Aromatic cyanoalkylation
through double C-H activation mediated by Ni(III). J. Am. Chem. Soc.
2016, 138, 5777−5780. (j) Pirovano, P.; Farquhar Erik, R.; Swart, M.;
Fitzpatrick Anthony, J.; Morgan Grace, G.; McDonald Aidan, R.
Characterization and reactivity of a terminal nickel(III)-oxygen adduct.
Chem. - Eur. J. 2015, 21, 3785−3790.
(15) Parr, R. G. W. Y. Density-Functional Theory of Atoms and
Molecules; Oxford University Press: 1994.
(16) Bochevarov, A. D.; Hughes, T. F.; Greenwood, J. R.; Braden, D.
A.; Philipp, D. M.; Rinaldo, D.; Halls, M. D.; Zhang, J.; Harder, E.;
Friesner, R. A. Jaguar: A high-performance quantum chemistry
software program with strengths in life and materials sciences. Int. J.
Quantum Chem. 2013, 113, 2110.
(17) (a) Becke, A. D. Density-functional exchange-energy approx-
imation with correct asymptotic behavior. Phys. Rev. A: At., Mol., Opt.
Phys. 1988, 38, 3098−3100. (b) Lee, C.; Yang, W.; Parr, R. G.
Development of the Colle-Salvetti correlation-energy formula into a
functional of the electron density. Phys. Rev. B: Condens. Matter Mater.
Phys. 1988, 37, 785−789. (c) Grimme, S.; Ehrlich, S.; Krieg, H.;
Antony, J. A consistent and accurate ab initio parametrization of
density functional dispersion correction (DFT-D) for the 94 elements
H-Pu. J. Chem. Phys. 2010, 132, 154104
(18) (a) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for
molecular calculations. Potentials for the transition metal atoms Sc to
Hg. J. Chem. Phys. 1985, 82, 270−283. (b) Hay, P. J.; Wadt, W. R. Ab
initio effective core potentials for molecular calculations. Potentials for
K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82,
299−310. (c) Wadt, W. R.; Hay, P. J. Ab initio effective core potentials
for molecular calculations. Potentials for main group elements Na to
Bi. J. Chem. Phys. 1985, 82, 284−298.
(19) Dunning, T. H. Gaussian basis sets for use in correlated
molecular calculations. I. The atoms boron through neon and
hydrogen. J. Chem. Phys. 1989, 90, 1007−1023.
(20) Chai, J.-D.; Head-Gordon, M. Systematic optimization of long-
range corrected hybrid density functionals. J. Chem. Phys. 2008, 128,
084106.
(21) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence,
triple zeta valence and quadruple zeta valence quality for H to Rn:
Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7,
3297−3305.
(22) Neese, F. Software update: the ORCA program system, version
4.0. Wiley Interdis. Rev.: Comput. Mol. Sci. 2018, 8, No. e1327.
(23) (a) Russell, S. K.; Bowman, A. C.; Lobkovsky, E.; Wieghardt, K.;
Chirik, P. J. Synthesis and Electronic Structure of Reduced
Bis(imino)pyridine Manganese Compounds. Eur. J. Inorg. Chem.
2012, 2012, 535−545. (b) Gibson, V. C.; Redshaw, C.; Solan, G. A.
Bis(imino)pyridines: Surprisingly Reactive Ligands and a Gateway to
New Families of Catalysts. Chem. Rev. 2007, 107, 1745−1776.
(c) Kowolik, K.; Shanmugam, M.; Myers, T. W.; Cates, C. D.; Berben,
(9) (a) Chirik, P. J.; Wieghardt, K. Radical ligands confer nobility on
base-metal catalysts. Science 2010, 327, 794−795. (b) Pierre, J.-L. One
electron at a time oxidations and enzymatic paradigms: from metallic
to non-metallic redox centers. Chem. Soc. Rev. 2000, 29, 251−257.
(10) (a) Fabbrizzi, L. Nonselective stabilization of nickel(III) by
saturated pentaaza macrocycles of varying size. J. Chem. Soc., Chem.
Commun. 1979, 1063−1065. (b) Zeigerson, E.; Ginzburg, G.;
Schwartz, N.; Luz, Z.; Meyerstein, D. Electrochemical preparation of
stable nickel(III) complexes with tetradentate macrocyclic ligands in
aqueous solutions. J. Chem. Soc., Chem. Commun. 1979, 241−243.
(11) (a) Cladis, D. P.; Kiernicki, J. J.; Fanwick, P. E.; Bart, S. C.
Multi-electron reduction facilitated by a trianionic pyridine(diimine)
ligand. Chem. Commun. 2013, 49 (39), 4169−4171. (b) Enright, D.;
Gambarotta, S.; Yap, G. P. A.; Budzelaar, P. H. M. The ability of the
α,α’-diiminopyridine ligand system to accept negative charge: isolation
J
Inorg. Chem. XXXX, XXX, XXX−XXX