1058
T. Ikai et al. / Reactive & Functional Polymers 71 (2011) 1055–1058
Table 1
efficient polysaccharide-based asymmetric organocatalyst may be
created by an appropriate combination of polysaccharides and cat-
alytically active groups as a result of the synergistic effects of the
chiralities of the constituent units and higher-order structures,
such as one-handed helical structures.
Enantioselective allylation catalyzed by polysaccharide (1–3) and glucose (Glu–NO)
derivatives.a
Entry
Catalyst
DS (%)b
Yield (%)c
ee (%)d
Configuratione
1
2
3
4
5
6
7
8
9
1a
1b
1c
1d
2
3a
3b
3c
19
23
33
0
34
22
27
37
25
47
62
59
0
37
70
64
59
55
13
32
24
–
<1
11
2
R
R
R
–
n.d.
S
S
S
S
Acknowledgements
This work was partly supported by the Foundation for the
Promotion of Ion Engineering and a Grant-in-Aid (No. 21750120)
from the Ministry of Education, Culture, Sports, Science, and Tech-
nology of Japan.
8
8
Glu–NO
a
Reactions were carried out at 1 mmol scale in CH2C12 (2 mL) with allyltri-
chlorosilane (1.2 equiv.), N-oxide (10 mol%), Bu4N+IÀ (1.2 equiv.), and Pr2NEt (5.0
i
References
equiv.) for 48 h at 0 °C.
b
Degree of substitution of pyridine N-oxide determined by elemental analysis.
Yield of the isolated product.
Determined by chiral HPLC on Chiralcel OD-H (hexane-2-propanol (99/1, v/v)).
Absolute configuration of the predominant isomer assigned by the comparison
c
[1] H. Hess, G. Burger, H. Musso, Angew. Chem. Int. Ed. 17 (1978) 612–614.
[2] M. Kotake, T. Sakan, N. Nakamura, S. Senoh, J. Am. Chem. Soc. 73 (1951) 2973–
2974.
[3] Y. Okamoto, M. Kawashima, K. Hatada, J. Chromatogr. 363 (1986) 173–186.
[4] Y. Okamoto, M. Kawashima, K. Yamamoto, K. Hatada, Chem. Lett. 13 (1984)
739–742.
d
e
of the sign of optical rotation.
[5] Y. Okamoto, M. Kawashima, K. Hatada, J. Am. Chem. Soc. 106 (1984) 5357–
5359.
3.4. Influence of the position of the N-oxide group on enantioselective
allylation
[6] T. Ikai, Y. Okamoto, Chem. Rev. 109 (2009) 6077–6101.
[7] Y. Okamoto, T. Ikai, Chem. Soc. Rev. 37 (2008) 2593–2608.
[8] R.W. Stringham, Adv. Chromatogr. 44 (2006) 257–290.
[9] E. Yashima, J. Chromatogr. A 906 (2001) 105–125.
[10] Y. Okamoto, E. Yashima, Angew. Chem. Int. Ed. 37 (1998) 1020–1043.
[11] T. Zhang, C. Kientzy, P. Franco, A. Ohnishi, Y. Kagamihara, H. Kurosawa, J.
Chromatogr. A 1075 (2005) 65–75.
[12] A. Ricci, L. Bernardi, C. Gioia, S. Vierucci, M. Robitzer, F. Quignard, Chem.
Commun. 46 (2010) 6288–6290.
[13] L. Xue, D.J. Zhou, L. Tang, X.F. Ji, M.Y. Huang, Y.Y. Jiang, React. Funct. Polym. 58
(2004) 117–121.
[14] J.C. Briggs, P. Hodge, Z.P. Zhang, React. Polym. 19 (1993) 73–80.
[15] K. Kaneda, H. Yamamoto, T. Imanaka, S. Teranishi, J. Mol. Catal. 29 (1985) 99–
104.
[16] Y. Kawabata, M. Tanaka, I. Ogata, Chem. Lett. 5 (1976) 1213–1214.
[17] P.I. Dalko (Ed.), Enantioselective Organocatalysis: Reactions and Experimental
Procedures, Wiley-VCH, Weinheim, Germany, 2007.
In contrast to the 3-pyridyl N-oxide-bound amylose derivative
1, the corresponding 4-pyridyl N-oxide-bound amylose derivative
2 showed almost no enantioselectivity (entry 5). It seems likely
that the catalytically active N-oxide groups in 2 may not be situ-
ated in a suitable chiral environment for chirality induction in
the allylation of benzaldehyde because the groups are located
away from the polysaccharide backbone. These results suggest that
to achieve high enantioselectivity, the reaction should occur in the
chiral groove formed by the higher-order structures of the amylose
derivatives.
[18] A. Berkessel, H. Gröger, Asymmetric Organocatalysis: From Biomimetic
Concepts to Applications in Asymmetric Synthesis, Wiley-VCH, Weinheim,
Germany, 2005.
[19] L. Bromberg, E. Fasoli, M. Alvarez, T.A. Hatton, G.L. Barletta, React. Funct.
Polym. 70 (2010) 433–441.
3.5. Enantioselective allylation catalyzed by cellulose derivatives 3
bearing pyridine N-oxide groups
The cellulose derivatives 3a–c also catalyzed the allylation reac-
tion in moderate yields (59–70%; entries 6–8), but the enantiose-
lectivities were much lower than those obtained with the
corresponding amylose derivatives 1a–c. Interestingly, the abso-
lute configurations of the predominant enantiomers obtained with
the amylose-based catalysts were opposite to those obtained with
the cellulose-based catalysts. As described in the CD spectral anal-
ysis, 3-pyridyl N-oxides in the amylose and cellulose derivatives
seem to be in opposite chiral environments because of their high-
er-order structures, and the opposite environments may result in
the different enantioselectivities in the allylation reactions.
[20] J. Chen, N. Takenaka, Chem. Eur. J. 15 (2009) 7268–7276.
[21] M. Benaglia, S. Guizzetti, L. Pignataro, Coord. Chem. Rev. 252 (2008) 492–512.
ˇ
[22] A.V. Malkov, P. Kocovsky, Eur. J. Org. Chem. (2007) 29–36.
[23] G. Chelucci, G. Marineddu, G.A. Pinna, Tetrahedron: Asymmetry 15 (2004)
1373–1389.
ˇ
[24] A.V. Malkov, P. Kocovsky, Curr. Org. Chem. 7 (2003) 1737–1757.
[25] M. Nakajima, J. Synth. Org. Chem. Jpn. 61 (2003) 1081–1087.
[26] C.A. Müller, T. Hoffart, M. Holbach, M. Reggelin, Macromolecules 38 (2005)
5375–5380.
ˇ
[27] A.V. Malkov, L. Dufková, L. Farrugia, P. Kocovsky, Angew. Chem. Int. Ed. 42
(2003) 3674–3677.
[28] T. Shimada, A. Kina, S. Ikeda, T. Hayashi, Org. Lett. 4 (2002) 2799–2801.
[29] A.V. Malkov, M. Orsini, D. Pernazza, K.W. Muir, V. Langer, P. Meghani, P.
ˇ
Kocovsky, Org. Lett. 4 (2002) 1047–1049.
[30] M. Nakajima, M. Saito, M. Shiro, S. Hashimoto, J. Am. Chem. Soc. 120 (1998)
6419–6420.
4. Conclusions
[31] B. Liu, X.M. Feng, F.X. Chen, G.L. Zhang, X. Cui, Y.Z. Jiang, Synlett (2001) 1551–
1554.
[32] S. Denmark, Y. Fan, J. Am. Chem. Soc. 124 (2002) 4233–4235.
[33] M. Nakajima, T. Yokota, M. Saito, S. Hashimoto, Tetrahedron Lett. 45 (2004)
61–64.
[34] M. Nakajima, M. Saito, M. Uemura, S. Hashimoto, Tetrahedron Lett. 43 (2002)
8827–8829.
[35] B. Tao, M.M.C. Lo, G.C. Fu, J. Am. Chem. Soc. 123 (2001) 353–354.
[36] A. Rahmatpour, React. Funct. Polym. 71 (2011) 80–83.
[37] Y. Sugiura, C. Yamamoto, T. Ikai, M. Kamigaito, Y. Okamoto, Polym. J. 42 (2010)
31–36.
We present a facile synthesis of amylose and cellulose deriva-
tives bearing various amounts of pyridine N-oxide groups, and
their use as organocatalysts for the enantioselective allylation of
benzaldehyde with allyltrichlorosilane. The present results indi-
cate that the higher-order structures that are inherent in each
polysaccharide derivative significantly affect the efficiency of chi-
ral induction in asymmetric reactions. We anticipate that a more