Page 5 of 6
Journal of the American Chemical Society
5.
(a) Ozaki, S.-i.; Roach, M. P.; Matsui, T.; Watanabe, Y.,
energies. J. Am. Chem. Soc. 2002, 124 (7), 1136-1137; (d) Gupta, R.;
Borovik, A. S., Monomeric MnIII/II and FeIII/II complexes with terminal
hydroxo and oxo ligands:ꢀ probing reactivity via O−H bond dissociation
energies. J. Am. Chem. Soc. 2003, 125 (43), 13234-13242; (e) MacBeth, C.
E.; Golombek, A. P.; Young, V. G.; Yang, C.; Kuczera, K.; Hendrich, M.
P.; Borovik, A. S., O2 activation by nonheme iron complexes: a monomeric
Fe(III)-oxo complex derived from O2. Science 2000, 289 (5481), 938-941;
(f) Ford, C. L.; Park, Y. J.; Matson, E. M.; Gordon, Z.; Fout, A. R., A
bioinspired iron catalyst for nitrate and perchlorate reduction. Science 2016,
354 (6313), 741; (g) Park, Y. J.; Matson, E. M.; Nilges, M. J.; Fout, A. R.,
Exploring Mn-O bonding in the context of an electronically flexible
Investigations of the roles of the distal heme environment and the proximal
heme iron ligand in peroxide activation by heme enzymes via molecular
engineering of myoglobin. Acc. Chem. Res. 2001, 34 (10), 818-825; (b)
Betley, T. A.; Wu, Q.; Van Voorhis, T.; Nocera, D. G., Electronic design
criteria for O−O bond formation via metal−oxo complexes. Inorg. Chem.
2008, 47 (6), 1849-1861; (c) Guo, M.; Corona, T.; Ray, K.; Nam, W., Heme
and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological
and Abiological Oxidation Reactions. ACS Cent Sci 2019, 5 (1), 13-28; (d)
Sacramento, J. J. D.; Goldberg, D. P., Factors affecting hydrogen atom
transfer reactivity of metal–oxo porphyrinoid complexes. Acc. Chem. Res.
2018, 51 (11), 2641-2652; (e) Goetz, M. K.; Hill, E. A.; Filatov, A. S.;
Anderson, J. S., Isolation of a terminal Co(III)-oxo complex. J. Am. Chem.
Soc. 2018, 140 (41), 13176-13180; (f) Usharani, D.; Janardanan, D.; Li, C.;
Shaik, S., A theory for bioinorganic chemical reactivity of oxometal
complexes and analogous oxidants: the exchange and orbital-selection
rules. Acc. Chem. Res. 2013, 46 (2), 471-482; (g) Kim, S. H.; Park, H.; Seo,
M. S.; Kubo, M.; Ogura, T.; Klajn, J.; Gryko, D. T.; Valentine, J. S.; Nam,
W., Reversible O−O bond cleavage and formation between Mn(IV)-peroxo
and Mn(V)-oxo corroles. J. Am. Chem. Soc. 2010, 132 (40), 14030-14032;
(h) Kurahashi, T.; Kikuchi, A.; Shiro, Y.; Hada, M.; Fujii, H., Unique
properties and reactivity of high-valent manganese−oxo versus
manganese−hydroxo in the salen platform. Inorg. Chem. 2010, 49 (14),
6664-6672; (i) Gunay, A.; Theopold, K. H., C−H bond activations by metal
oxo compounds. Chem. Rev. 2010, 110 (2), 1060-1081.
1
2
3
4
5
6
7
8
secondary coordination sphere: synthesis of
a Mn(III)-oxo. Chem.
9
Commun. 2015, 51 (25), 5310-5313; (h) Matson, E. M.; Park, Y. J.; Fout,
A. R., Facile nitrite reduction in a non-heme iron system: formation of an
iron(III)-Oxo. J. Am. Chem. Soc. 2014, 136 (50), 17398-17401; (i) Gordon,
Z.; Drummond, M. J.; Matson, E. M.; Bogart, J. A.; Schelter, E. J.; Lord, R.
L.; Fout, A. R., Tuning the Fe(II/III) redox potential in nonheme Fe(II)–
hydroxo complexes through primary and secondary coordination sphere
modifications. Inorg. Chem. 2017, 56 (9), 4852-4863.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
9.
Han, Z.; Horak, K. T.; Lee, H. B.; Agapie, T., Tetranuclear
manganese models of the OEC displaying hydrogen bonding interactions:
application to electrocatalytic water oxidation to hydrogen peroxide. J. Am.
Chem. Soc. 2017, 139 (27), 9108-9111.
10.
de Ruiter, G.; Thompson, N. B.; Lionetti, D.; Agapie, T., Nitric
oxide activation by distal redox modulation in tetranuclear iron nitrosyl
6.
(a) de Visser, S. P.; Kumar, D.; Neumann, R.; Shaik, S.,
complexes. J. Am. Chem. Soc. 2015, 137 (44), 14094-14106.
Computer-generated high-valent iron–oxo and manganese–oxo species
with polyoxometalate ligands: how do they compare with the iron–oxo
active species of heme enzymes? Angew. Chem. Int. Ed. 2004, 43 (42),
5661-5665; (b) Khenkin, A. M.; Kumar, D.; Shaik, S.; Neumann, R.,
Characterization of manganese(V)−oxo polyoxometalate intermediates and
their properties in oxygen-transfer reactions. J. Am. Chem. Soc. 2006, 128
(48), 15451-15460; (c) Xue, G.; De Hont, R.; Münck, E.; Que, L., Jr.,
Million-fold activation of the [Fe2(μ-O)2] diamond core for C-H bond
cleavage. Nature Chemistry 2010, 2 (5), 400-405; (d) Vaddypally, S.;
Kondaveeti, S. K.; Karki, S.; Van Vliet, M. M.; Levis, R. J.; Zdilla, M. J.,
Reactive pendant Mn=O in a synthetic structural model of a proposed S4
state in the photosynthetic oxygen evolving complex. J. Am. Chem. Soc.
2017, 139 (13), 4675-4681; (e) Sarma, R.; Angeles-Boza, A. M.; Brinkley,
D. W.; Roth, J. P., Studies of the di-iron(VI) intermediate in ferrate-
dependent oxygen evolution from water. J. Am. Chem. Soc. 2012, 134 (37),
15371-15386.
11.
Arnett, C. H.; Chalkley, M. J.; Agapie, T., A thermodynamic
model for redox-dependent binding of carbon monoxide at site-
differentiated, high spin iron clusters. J. Am. Chem. Soc. 2018, 140 (16),
5569-5578.
12.
McDonald, A. R.; Que Jr, L., High-valent nonheme iron-oxo
complexes: synthesis, structure, and spectroscopy. Coord. Chem. Rev.
2013, 257 (2), 414-428.
13.
Andris, E.; Navrátil, R.; Jašík, J.; Puri, M.; Costas, M.; Que, L.;
Roithová, J., Trapping iron(III)–oxo species at the boundary of the “Oxo
Wall”: insights into the nature of the Fe(III)–O bond. J. Am. Chem. Soc.
2018, 140 (43), 14391-14400.
14.
(a) Bordwell, F. G.; Satish, A. V.; Zhang, S.; Zhang, X. M.,
Using thermodynamic cycles to study reactive intermediates. In Pure Appl.
Chem., 1995; Vol. 67, p 735; (b) Mayer, J. M., Hydrogen Atom Abstraction
by Metal−Oxo Complexes:ꢀ Understanding the Analogy with Organic
Radical Reactions. Acc. Chem. Res. 1998, 31 (8), 441-450; (c) Warren, J.
J.; Tronic, T. A.; Mayer, J. M., Thermochemistry of proton-coupled
electron transfer reagents and its implications. Chem. Rev. 2010, 110 (12),
6961-7001.
7.
(a) Carsch, K. M.; de Ruiter, G.; Agapie, T., Intramolecular C–
H and C–F bond oxygenation by site-differentiated tetranuclear manganese
models of the OEC. Inorg. Chem. 2017, 56 (15), 9044-9054; (b) de Ruiter,
G.; Thompson, N. B.; Takase, M. K.; Agapie, T., Intramolecular C–H and
C–F bond oxygenation mediated by a putative terminal oxo species in
tetranuclear iron complexes. J. Am. Chem. Soc. 2016, 138 (5), 1486-1489;
(c) de Ruiter, G.; Carsch, K. M.; Gul, S.; Chatterjee, R.; Thompson, N. B.;
Takase, M. K.; Yano, J.; Agapie, T., Accelerated oxygen atom transfer and
C−H bond oxygenation by remote redox changes in Fe3Mn-iodosobenzene
adducts. Angew. Chem. Int. Ed. 2017, 56 (17), 4772-4776.
15.
Reed, C. J.; Agapie, T., Thermodynamics of proton and electron
transfer in tetranuclear clusters with Mn–OH2/OH motifs relevant to H2O
activation by the oxygen evolving complex in photosystem II. J. Am. Chem.
Soc. 2018, 140 (34), 10900-10908.
16.
PCET is broadly referred to here as the transfer of a proton and
an electron to different parts of a complex (see ref. 17); the precise
mechanism, whether concerted (CPET or EPT) or stepwise (either PTET or
ETPT), is left ambiguous, as the present experiments cannot differentiate
them.
8.
(a) Lacy, D. C.; Gupta, R.; Stone, K. L.; Greaves, J.; Ziller, J.
W.; Hendrich, M. P.; Borovik, A. S., Formation, structure, and EPR
detection of a high spin FeIV—oxo species derived from either an FeIII—
oxo or FeIII—OH complex. J. Am. Chem. Soc. 2010, 132 (35), 12188-
12190; (b) Gupta, R.; Taguchi, T.; Lassalle-Kaiser, B.; Bominaar, E. L.;
Yano, J.; Hendrich, M. P.; Borovik, A. S., High-spin Mn–oxo complexes
and their relevance to the oxygen-evolving complex within photosystem II.
Proc. Natl. Acad. Sci. 2015, 112 (17), 5319-5324; (c) Gupta, R.; MacBeth,
C. E.; Young, V. G.; Borovik, A. S., Isolation of monomeric MnIII/II−OH
and MnIII−O complexes from water:ꢀ evaluation of O−H bond dissociation
17.
Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.;
Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.;
Meyer, T. J., Proton-Coupled Electron Transfer. Chem. Rev. 2012, 112 (7),
4016-4093.
18.
Goetz, M. K.; Anderson, J. S., Experimental Evidence for p Ka-
Driven Asynchronicity in C-H Activation by a Terminal Co(III)-Oxo
Complex. J. Am. Chem. Soc. 2019, 141 (9), 4051-4062.
ACS Paragon Plus Environment