Journal of the American Chemical Society
Page 4 of 5
Borylation of Haloarenes and Quaternary Arylammonium Salts. J.
The Supporting Information is available free of charge on the
ACS Publications website. Complete experimental data and
computational details including Cartesian coordinates for
stationary points (PDF) Crystallographic data (CIF) of 1-15
(ZIP) [CCDC: 1916645-1916659].
Am. Chem. Soc. 2016, 138, 2985-2988. (b) Mfuh, A. M.; Schneider,
B. D.; Cruces, W.; Larionov, O. V. Metal- and Additive-free
Photoinduced Borylation of Haloarenes. Nat. Protoc. 2017, 12, 604.
(c) Chen, K.; Cheung, M. S.; Lin, Z.; Li, P. Metal-free Borylation of
Electron-rich Aryl (Pseudo)halides Under Continuous-flow
Photolytic Conditions. Org. Chem. Front. 2016, 3, 875-879.
1
2
3
4
5
6
7
8
(7) (a) Fox, W. B.; Wartik, T. Reaction of Diboron Tetrach Reaction
of Diboron Tetrachloride with Aromatic Substances. J. Am. Chem.
Soc. 1961, 83, 498-499. (b) Wilkey, J. D.; Schuster, G. B. 2,5,7,7-
AUTHOR INFORMATION
Corresponding Author
Tetraphenyl-7-boratabicyclo[4.1.0]hepta-2,4-diene:
The
First
Isolation and Characterization of a Boratanorcaradiene. J. Am. Chem.
Soc. 1988, 110, 7569-7571. (c) Wilkey, J. D.; Schuster, G. B.
Photochemistry of Tetraarylborate Salts (Ar4B-): Formation of
9
Notes
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The authors declare no competing financial interests.
2,5,7,7-Tetraphenyl-7-boratabicyclo[4.1,0]hepta-2,4-diene
(a
Boratanorcaradiene) by Irradiation of (p-Biphenylyl)triphenyl
Borate. J. Am. Chem. Soc. 1991, 113, 2149-2155.
ACKNOWLEDGMENT
(8) (a) Rao, Y.-L.; Amarne, H.; Zhao, S.-B.; McCormick, T. M.;
Martić, S.; Sun, Y.; Wang, R.-Y.; Wang, S. Reversible Intramolecular
C-C Bond Formation/Breaking and Color Switching Mediated by a
N,C-Chelate in (2-ph-py)BMes2 and (5-BMes2-2-ph-py)BMes2. J.
Am. Chem. Soc. 2008, 130, 12898-12900. (b) Rao, Y.-L.; Amarne,
H.; Wang, S. Photochromic Four-coordinate N,C-chelate Boron
Compounds. Coord. Chem. Rev. 2012, 256, 759-770. (c) Mellerup,
S. K.; Wang, S. Photoresponsive Organoboron Systems. In Main
Group Strategies towards Functional Materials; Baumgartner, T.,
Jakle, F., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, 2018; p 47−78.
(d) Mellerup, S. K.; Wang, S. Isomerization and Rearrangement of
Boriranes: from Chemical Rarities to Functional Materials. Sci.
China Mater. 2018, 61, 1249−1256.
This work was financially supported by Nanyang
Technological University (NTU), Singapore, and the
Singapore Ministry of Education (MOE2015-T2-032) (R.K.).
REFERENCES
(1) (a) Suzuki, A. Cross-Coupling Reactions of Organoboranes: an
Easy Way to Construct C‒C Bonds (Nobel Lecture). Angew. Chem.
Int. Ed. 2011, 50, 6723-6737. (b) Fernandez, E.; Whiting, A.
Synthesis and Application of Organoboron Compounds, Springer
International Publishing, Switzerland, 2015.(c) Fyfe, J. W. B.;
Watson, A. J. B. Recent Developments in Organoboron Chemistry:
Old Dogs, New Tricks. Chem 2017, 3, 31-55.
(2) (a) Ishiyama, T.; Miyaura, N. Transition Metal-catalyzed
Borylation of Alkanes and Arenes via C‒H Activation. J. Organomet.
Chem. 2003, 680, 3-11. (b) Mkhalid, I. A. I.; Barnard, J. H.; Marder,
T. B.; Murphy, J. M.; Hartwig, J. F. C-H Activation for the
Construction of C-B Bonds. Chem. Rev. 2010, 110, 890-931. (c)
Hartwig, J. F. Regioselectivity of the Borylation of Alkanes and
Arenes. Chem. Soc. Rev. 2011, 40, 1992-2002. (d) Hartwig, J. F.
Borylation and Silylation of C‒H Bonds: A Platform for Diverse C‒H
Bond Functionalizations. Acc. Chem. Res. 2012, 45, 864-873. (e)
Ros, A.; Fernández, R.; Lassaletta, J. M. Functional Group Directed
C–H Borylation. Chem. Soc. Rev. 2014, 43, 3229-3243. (h) Xu, L.;
Wang, G.; Zhang, S.; Wang, H.; Wang, L.; Liu, L.; Jiao, J.; Li, P.
Recent Advances in Catalytic C–H Borylation Reactions.
Tetrahedron 2017, 73, 7123-7157.
(3) (a) Ohsato, T.; Okuno, Y.; Ishida, S.; Iwamoto, T.; Lee, K.-H.;
Lin, Z.; Yamashita, M.; Nozaki, K. A Potassium Diboryllithate:
Synthesis, Bonding Properties, and the Deprotonation of Benzene.
Angew. Chem. Int. Ed. 2016, 55, 11426-11430. (b) Segawa, Y.;
Suzuki, Y.; Yamashita, M.; Nozaki, K. Chemistry of Boryllithium:
Synthesis, Structure, and Reactivity. J. Am. Chem. Soc. 2008, 130,
16069-16079. (c) Monot, J.; Solovyev, A.; Bonin-Dubarle, H.; Derat,
É.; Curran, D. P.; Robert, M.; Fensterbank, L.; Malacria, M.; Lacôte,
E. Generation and Reactions of an Unsubstituted N-Heterocyclic
Carbene Boryl Anion. Angew. Chem. Int. Ed. 2010, 49, 9166-9169.
(d) Landmann, J.; Sprenger, J. A. P.; Bertermann, R.; Ignat’ev, N.;
Bernhardt-Pitchougina, V.; Bernhardt, E.; Willner, H.; Finze, M.
(9) Bissinger, P.; Braunschweig, H.; Kraft, K.; Kupfer, T. Trapping
the Elusive Parent Borylene. Angew. Chem. Int. Ed. 2011, 50, 4704-
4707.
(10) Su, Y.; Li, Y.; Ganguly, R.; Kinjo, R. Engineering the Frontier
Orbitals of a Diazadiborinine for Facile Activation of H2 , NH3 , and
an Isonitrile. Angew. Chem. Int. Ed. 2018, 57, 7846-7849.
(11) Su, Y.; Kinjo, R. Small Molecule Activation by Boron-
containing Heterocycles. Chem. Soc. Rev. 2019, 48, 3613-3659.
(12) (a) Johnson, S. A.; Hatnean, J. A.; Doster, M. E.
Functionalization of Fluorinated Aromatics by Nickel ‐Mediated
C−H and C−F Bond Oxidative Addition: Prospects for the Synthesis
of Fluorine-Containing Pharmaceuticals. In Progress in Inorganic
Chemistry, Karlin, K. D. Eds.; John Wiley & Sons, Inc.: Hoboken,
2011; p 255-352. (b)Clot, E.; Eisenstein, O.; Jasim, N.; Macgregor,
S. A.; Mcgrady,J. E.; Perutz, R. N. C-F and C-H Bond Activation of
Fluorobenzenes and Fluoropyridines at Transition Metal Centers:
How Fluorine Tips the Scales. Acc. Chem. Res. 2011, 44, 333-348.
(c) Eisenstein, O.; Milani, J.; Perutz, R. N. Selectivity of C−H
Activation and Competition between C−H and C−F Bond Activation
at Fluorocarbons. Chem. Rev. 2017, 117, 8710-8753. (d) Pike, S. D.;
Crimmin, M. R.; Chaplin, A. B. Organometallic Chemistry Using
Partially Fluorinated Benzenes. Chem. Commun. 2017, 53, 3615-
3633. For reviews on main-group molecules mediated C‒F activation,
see: (e) Chen, W.; Bakewell, C.; Crimmin, M. R. Functionalisation of
Carbon–Fluorine Bonds with Main Group Reagents. Synthesis 2017,
49, 810-821. (f) Chu, T.; Nikonov, G. Oxidative Addition and
Reduction Elimination at Main-Group Element Centers. Chem. Rev.
2018, 118, 3608-3680.
2-
Convenient Access to the Tricyanoborate Dianion B(CN)3 and
Selected Reactions as a Boron-centred Nucleophile. Chem. Commun.
2015, 51, 4989-4992. (e) Landmann, J.; Hennig, P. T.; Ignat’ev, N.
V.; Finze, M. Borylation of Fluorinated Arenes Using the Boron-
centred Nucleophile B(CN)32-‒a Unique Entry to Aryltricyano-
borates. Chem. Sci. 2017, 8, 5962-5968. (f) Braunschweig,H.;
Dewhurst, R.D.; Herbst, T.; Radacki, K. Reactivity of a Terminal
Chromium Borylene Complex towards Olefins: Insertion of
Borylene into a C‒H Bond. Angew. Chem. Int. Ed. 2008, 47, 5978-
5980.
(4) (a) Chen, K.; Wang, L.; Meng, G.; Li, P. Recent Advances in
Transition-Metal-Free Aryl C–B Bond Formation. Synthesis 2017,
49, 4719-4730. (b) Lawson, J. R.; Melen, R. L. Tris(pentafl-
uorophenyl)borane and Beyond: Modern Advances in Borylation
Chemistry. Inorg. Chem. 2017, 56, 8627-8643.
(5) Ingleson, M. J. A Perspective on Direct Electrophilic Arene
Borylation. Synlett 2012, 23, 1411–1415.
(6) (a) Mfuh, A. M.; Doyle, J. D.; Chhetri, B.; Arman, H. D.;
Larionov, O. V. Scalable, Metal- and Additive-Free, Photoinduced
(13) Liebov, B. K.; Harman, W. D. Group 6 Dihapto-Coordinate
Dearomatization Agents for Organic Synthesis. Chem. Rev. 2017, 117,
13721-13755.
(14) (a) Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. Excited-State
Reactions of an Isolable Silylene with Aromatic Compounds. J. Am.
Chem. Soc. 2002, 124, 3830-3831. (b) Wendel, D.; Porzelt, A.; Herz,
F. A. D.; Sarkar, D.; Jandl, C.; Inoue, S.; Rieger, B. From Si(II) to
Si(IV) and Back: Reversible Intramolecular Carbon–Carbon Bond
Activation by an Acyclic Iminosilylene. J. Am. Chem. Soc. 2017, 139,
8134-8137. (c) Liu, L. L.; Zhou, J.; Cao, L. L.; Kim, Y.; Stephan, D.
Reversible Intramolecular Cycloaddition of Phosphaalkene to an
Arene Ring. J. Am. Chem. Soc. 2019, 141, 20, 8083-8087. (d) Hicks,
J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Reversible, Room-
Temperature C—C Bond Activation of Benzene by an Isolable Metal
Complex. J. Am. Chem. Soc. 2019, 141, 28, 11000-11003.
a
(15) For the influence of the Cl-substituent on the B atom in 4, see
the Supporting Information.
ACS Paragon Plus Environment