10.1002/anie.201911138
Angewandte Chemie International Edition
RESEARCH ARTICLE
(QC) insertion reaction. This method tolerates various
substituents on the carbene precursors, affording functionalized
phenol moieties anchored onto 1,4-cyclohexadienes; several
other types of C(sp3)–H bonds (allylic, benzylic, and/or to
heteroatoms) can also be activated and arylated. This
methodology is enabled by the HAT reactivity of metal-QC
intermediate, which represents a rare example of radical
mechanism in intermolecular carbene C–H insertion catalysis.
Such a reaction pathway, together with the steric demand of
porphyrin ligand, also gives rise to the unique regioselectivity of
this reaction.
Chemical Science. Y.R. thanks the FAME/Mercator scholarship.
We thank Drs. Jie-Sheng Huang, Ka-Pan Shing, and Zhou Tang
for helpful discussions.
Keywords: carbenes • diazo compounds • homogeneous
catalysis • iridium • radical reactions
[1]
[2]
M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds, Wiley, 1998.
a) H. M. L. Davies, R. E. J. Beckwith, Chem. Rev. 2003, 103, 2861; b) M.
P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704; c)
C.-M. Che, V. K.-Y. Lo, C.-Y. Zhou, J.-S. Huang, Chem. Soc. Rev. 2011,
40, 1950; d) H. Lu, X. P. Zhang, Chem. Soc. Rev. 2011, 40, 1899; e) A.
Caballero, M. M. Díaz-Requejo, M. R. Fructos, A. Olmos, J. Urbano, P.
J. Pérez, Dalton Trans. 2015, 44, 20295.
[3]
a) A. G. Griesbeck, E. Zimmermann in Science of Synthesis (Ed.: A. G.
Griesbeck), Thieme, 2006, pp. 807; b) D. I. A. Othman, M. Kitamura,
Heterocycles 2016, 92, 1761.
[4]
[5]
[6]
H.-X. Wang, Q. Wan, K. Wu, K.-H. Low, C. Yang, C.-Y. Zhou, J.-S.
Huang, C.-M. Che, J. Am. Chem. Soc. 2019, 141, 9027.
H. T. Dao, P. S. Baran, Angew. Chem. Int. Ed. 2014, 53, 14382; Angew.
Chem. 2014, 126, 14610.
a) E. R. Baral, Y. R. Lee, S. H. Kim, Adv. Synth. Catal. 2015, 357, 2883;
b) S.-S. Zhang, C.-Y. Jiang, J.-Q. Wu, X.-G. Liu, Q. Li, Z.-S. Huang, D.
Li, H. Wang, Chem. Commun. 2015, 51, 10240; c) D. Das, P. Poddar, S.
Maity, R. Samanta, J. Org. Chem. 2017, 82, 3612; d) Z. Liu, J.-Q. Wu,
S.-D. Yang, Org. Lett. 2017, 19, 5434; e) R. Chen, S. Cui, Org. Lett. 2017,
19, 4002; f) K. B. S. Magar, T. N. J. I. Edison, Y. R. Lee, Eur. J. Org.
Chem. 2017, 2017, 7046; g) K. Wu, B. Cao, C.-Y. Zhou, C.-M. Che,
Chem. Eur. J. 2018, 24, 4815; h) Y.-S. Jang, Ł. Woźniak, J. Pedroni, N.
Cramer, Angew. Chem. Int. Ed. 2018, 57, 12901; Angew. Chem. 2018,
130, 13083; i) B. Ghosh, A. Biswas, S. Chakraborty, R. Samanta, Chem.
Asian J. 2018, 13, 2388.
[7]
[8]
[9]
a) M. Kitamura, K. Otsuka, S. Takahashi, T. Okauchi, Tetrahedron Lett.
2017, 58, 3508; b) D. I. A. Othman, K. Otsuka, S. Takahashi, K. B. Selim,
M. A. El-Sayed, A. S. Tantawy, T. Okauchi, M. Kitamura, Synlett 2018,
29, 457; c) B. Ghosh, R. Samanta, Chem. Commun. 2019, 55, 6886.
a) N. Ashkenazi, A. Vigalok, S. Parthiban, Y. Ben-David, L. J. W. Shimon,
J. M. L. Martin, D. Milstein, J. Am. Chem. Soc. 2000, 122, 8797; b) A.
Dauth, U. Gellrich, Y. Diskin-Posner, Y. Ben-David, D. Milstein, J. Am.
Chem. Soc. 2017, 139, 2799.
a) N. P. van Leest, R. F. J. Epping, K. M. van Vliet, M. Lankelma, E. J.
van den Heuvel, N. Heijtbrink, R. Broersen, B. de Bruin, in Advances in
Organometallic Chemistry, Vol. 70 (Eds.: P. J. Pérez, F. G. A. Stone, R.
West), Academic Press, 2018, pp. 71; b) X. Cui, X. Xu, L.-M. Jin, L.
Wojtas, X. P. Zhang, Chem. Sci. 2015, 6, 1219; c) B. G. Das, A. Chirila,
M. Tromp, J. N. H. Reek, B. de Bruin, J. Am. Chem. Soc. 2016, 138,
8968; d) C. te Grotenhuis, B. G. Das, P. F. Kuijpers, W. Hageman, M.
Trouwborst, B. de Bruin, Chem. Sci. 2017, 8, 8221; e) Y. Wang, X. Wen,
X. Cui, X. P. Zhang, J. Am. Chem. Soc. 2018, 140, 4792; f) X. Wen, Y.
Wang, X. P. Zhang, Chem. Sci. 2018, 9, 5082; g) C. te Grotenhuis, N.
van den Heuvel, J. I. van der Vlugt, B. de Bruin, Angew. Chem. Int. Ed.
2018, 57, 140; Angew. Chem. 2018, 130, 146; h) A. S. Karns, M.
Goswami, B. de Bruin, Chem. Eur. J. 2018, 24, 5253; i) M. Lankelma, A.
M. Olivares, B. de Bruin, Chem. Eur. J. 2019, 25, 5658.
Scheme 6. (a) Gram-scale synthesis of 1a and determination of TON. (b)
Product transformation of 1a using crude reaction mixture. DDQ = 2,3-dichloro-
5,6-dicyano-p-benzoquinone; mCPBA
= 3-chloroperbenzoic acid; d.r. =
diastereomeric ratio; Tf = triflate; Cy = cyclohexyl.
[10] a) W. I. Dzik, X. P. Zhang, B. de Bruin, Inorg. Chem. 2011, 50, 9896; b)
H. Lu, W. I. Dzik, X. Xu, L. Wojtas, B. de Bruin, X. P. Zhang, J. Am. Chem.
Soc. 2011, 133, 8518.
Acknowledgements
This work is supported by Hong Kong Research Grants Council
(HKU 17303815) and Basic Research Program-Shenzhen Fund
(JCYJ20170412140251576, JCYJ20170818141858021, and
JCYJ20180508162429786). We thank UGC funding administered
by The University of Hong Kong for supporting the MALDI-TOF-
MS Facilities under the Support for Interdisciplinary Research in
[11] Ir(IV) porphyrinoids have only been observed spectroscopically. a) K. M.
Kadish, Y. J. Deng, C.-L. Yao, J. E. Anderson, Organometallics 1988, 7,
1979; b) J. H. Palmer, M. W. Day, A. D. Wilson, L. M. Henling, Z. Gross,
H. B. Gray, J. Am. Chem. Soc. 2008, 130, 7786; c) T.-L. Lam, K.-C. Tong,
C. Yang, W.-L. Kwong, X. Guan, M.-D. Li, V. K.-Y. Lo, S. L.-F. Chan, D.
L. Phillips, C.-N. Lok, C.-M. Che, Chem. Sci. 2019, 10, 293.
This article is protected by copyright. All rights reserved.