S. M. Riyadh et al. / Tetrahedron Letters 42 (2001) 3009–3011
3011
-2e, -H+
Ph
S
Many Fluorinated Products
F-/ DME
Scheme 2.
Y
+
Ph
S
CH2Cl2
Fluorinated Products
N
F
X
X
r.t. or reflux
TfO-
Scheme 3.
formation of fluorinated products as shown in Scheme
3.20 Therefore, electrochemical fluorination proved to
be superior to the conventional chemical method.
13. Constant current electrolysis (5 mA/cm2) of 1a (1 or 5
mmol) was carried out at platinum electrodes (3×3 cm2)
at ambient temperature in DME (30 or 60 ml) containing
0.37 M fluoride salt using an undivided cell under a
nitrogen atmosphere. After electrolysis, the supporting
electrolyte was removed by silica gel short column chro-
matography. The yields of the products 2a and 3a were
estimated by 19F NMR spectroscopy. Compound 2a was
converted to a-fluoroallenyl sulfide 4a, which was easily
isolated by silica gel preparative thin-layer chromato-
graphy.
In summary, we have successfully carried out for the
first time selective anodic mono- and difluorination of
aryl propargyl sulfides, and the monofluorinated prod-
ucts were readily transformed into stable a-fluoroallenyl
sulfides. Further studies of the synthetic application of
allenes are in progress. The fluorinated products
obtained here are proposed to be highly useful building
blocks.
14. After electrolysis, the electrolytic solution was passed
through silica gel short column chromatography using
ethyl acetate and the eluent was concentrated to give 2a.
Compound 2b was obtained similarly. Compound 2a:
References
1
yellow oil; H NMR (CDCl3, 270 MHz) l 3.03 (dd, 1H,
J=4.6, 2.3 Hz), 6.41 (dd, 1H, J=53.8, 2.3 Hz), 7.3–7.6
(m, 5H); 19F NMR (CDCl3, 254 MHz) l −62.82 (dd,
J=55, 5 Hz); MS (m/z) 166 (M+). HRMS calcd for
C9H7FS: 166.0253. Found: 166.023.
1. Ishii, H.; Hou, Y.; Fuchigami, T. Tetrahedron 2000, 56,
8877.
2. (a) Biomedicinal Aspects of Fluorine Chemistry; Filler, R.;
Kobayashi, Y., Eds.; Kondaansha & Elsevier Biomedical:
Tokyo, 1982; (b) Hiyama, T. Organofluorine Compounds;
Springer: Berlin, 2000.
3. Welch, J. T. Tetrahedron 1987, 43, 3123.
4. Welch, J. T.; Eswarakrishnan, S. Fluorine in Bioorganic
Chemistry; Wiley: New York, 1991.
15. Compound 3a: pale yellow oil; 1H NMR (CDCl3, 270
MHz) l 2.98 (t, 1H, J=4.3 Hz), 7.2–7.6 (m, 5H); 19F
NMR (CDCl3, 254 MHz) l 16.7 (d, J=4.6 Hz); MS
(m/z) 184 (M+). HRMS calcd for C9H6F2S: 184.0157.
Found: 184.0158.
16. Fuchigami, T.; Konno, A. J. Org. Chem. 1997, 62, 8579.
17. Compound 3b: pale yellow oil; 1H NMR (CDCl3, 270
MHz) l 3.03 (t, 1H, J=4.3 Hz), 7.3 (d, 2H, J=8 Hz), 7.6
(d, 2H, J=8 Hz); 19F NMR (CDCl3, 254 MHz) l 16.7 (d,
J=4.3 Hz); MS (m/z) 218 (M+). Anal. calcd for
C9H5ClF2S: C, 49.44; H, 2.30. Found: C, 49.11; H, 2.70.
5. Yoshioka, H.; Nakayama, C.; Matsuo, N. J. Synth. Org.
Chem. Jpn. 1984, 42, 809.
6. Narizuka, S.; Fuchigami, T. Bioorg. Med. Chem. Lett.
1995, 5, 1293.
7. Chou, T. S.; Heath, P. C.; Patterson, L. M.; Lakin, R. E.;
Hunt, A. H. Synthesis 1992, 565.
1
Compound 3c: yellow oil; H NMR (CDCl3, 270 MHz) l
8. (a) Schirlin, D.; Van Dorsselar, V.; Weber, F.; Weill, C.;
Altenburger, J. M.; Neises, B.; Flynn, G.; Remy, J. M.;
Trrnus, C. Bioorg. Med. Chem. 1993, 3; (b) Sharm, H. L.;
Eideburg, N. E.; Spanton, S. G.; Kohlbrenner, D. W.;
Platter, J. J.; Erickson, J. W. J. Chem. Soc., Chem.
Commun. 1991, 110.
9. Berkowitz, D. B.; Sloss, D. G. J. Org. Chem. 1995, 60,
7047.
10. Chemistry of Organic Fluorine Compounds; Hudlicky, M.;
Pavlath, A. E., Eds.; American Chemical Society: Wash-
ington, DC, 1995; p. 41.
7.3–7.7 (m, 10H); 19F NMR (CDCl3, 254 MHz) l 18.5 (s)
MS (m/z) 260 (M+). Anal. calcd for C15H10F2S: C, 69.21;
H, 3.87. Found: C, 69.19; H, 4.18.
18. Compound 4a: yellow oil; 1H NMR (CDCl3, 270 MHz) l
5.09 (t, 2H, J=3 Hz), 7.2–7.5 (m, 5H); 19F NMR
(CDCl3, 254 MHz) l −40.05 (t, J=3 Hz); MS (m/z) 166
(M+). HRMS calcd for C9H7FS: 166.0253. Found:
166.0239.
19. (a) Umemoto, T.; Tomizawa, G. Bull Chem. Soc. Jpn.
1986, 59, 3625; (b) Umemoto, T.; Tomizawa, G. J. Org.
Chem. 1995, 60, 8565.
20. The fluorination did not proceed even in the presence of
Et3N: Lal, G. S.; Pez, G. P.; Syvret, R. G. Chem. Rev.
1996, 96, 1737.
11. Zepata, A. J.; Gu, Y.; Hammond, G. B. J. Org. Chem.
2000, 65, 227.
12. Fuchigami, T.; Shimojo, M.; Konno, A.; Nakagawa, K.
J. Org. Chem. 1990, 55, 6074.